ark-instruct-line-item / gorilla /llama_attn_replace_sft.py
tosi-n7's picture
Upload folder using huggingface_hub
d8ffdc4
# Modified based on https://github.com/lm-sys/FastChat
import warnings
from typing import Optional, Tuple
import torch
from torch import nn
import transformers
from einops import rearrange
from flash_attn import __version__ as flash_attn_version
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import (
flash_attn_func,
flash_attn_varlen_kvpacked_func,
flash_attn_varlen_qkvpacked_func
)
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv, rotate_half
from flash_attn.bert_padding import unpad_input, pad_input
import math
group_size_ratio = 1/4
sft_group_size = 8192
def forward_flashattn(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel
attention_mask: [bsz, q_len]
"""
if not self.training:
warnings.warn("This function should be used just for training as it may exhibit reduced inference performance. For inference, please use forward_flashattn_inference.")
if output_attentions:
warnings.warn(
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
)
bsz, q_len, _ = hidden_states.size()
query_states = (
self.q_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
key_states = (
self.k_proj(hidden_states)
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(hidden_states)
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
# [bsz, q_len, nh, hd]
# [bsz, nh, q_len, hd]
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids
)
# Past Key value support
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# Flash attention codes from
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
# transform the data into the format required by flash attention
qkv = torch.stack(
[query_states, key_states, value_states], dim=2
) # [bsz, nh, 3, q_len, hd]
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
# We have disabled _prepare_decoder_attention_mask in LlamaModel
# the attention_mask should be the same as the key_padding_mask
key_padding_mask = attention_mask.repeat(2, 1)
nheads = qkv.shape[-2]
# shift
if q_len % 4096 == 0:
group_size = int(q_len * group_size_ratio)
else:
group_size = sft_group_size
qkv = qkv.reshape(bsz, q_len, 3, 2, self.num_heads // 2, self.head_dim).permute(0, 3, 1, 2, 4, 5).reshape(bsz * 2,
q_len, 3,
self.num_heads // 2,
self.head_dim)
x = rearrange(qkv, "b s three h d -> b s (three h d)")
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
cu_q_len_tmp = torch.arange(0, max_s, group_size, device=key_padding_mask.device, dtype=cu_q_lens.dtype)
cu_q_len_tmp2 = cu_q_len_tmp + group_size // 2
cu_q_len_tmp2[cu_q_len_tmp2 >= max_s] = torch.iinfo(cu_q_len_tmp2.dtype).min
cu_q_len_tmp = torch.stack([cu_q_len_tmp, cu_q_len_tmp2]).repeat(bsz, 1) + cu_q_lens[:-1].unsqueeze(-1)
cu_q_lens = torch.cat([cu_q_len_tmp, cu_q_lens[1:].unsqueeze(-1)], dim=-1).view(-1)
cu_q_lens = cu_q_lens[cu_q_lens >= 0]
x_unpad = rearrange(
x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads // 2
)
output_unpad = flash_attn_varlen_qkvpacked_func(
x_unpad, cu_q_lens, group_size, 0.0, softmax_scale=None, causal=True
)
output = rearrange(
pad_input(
rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz * 2, q_len
),
"b s (h d) -> b s h d",
h=nheads // 2,
)
output = output.reshape(bsz, 2, q_len, nheads // 2, self.head_dim).transpose(1, 2).reshape(bsz, q_len, nheads,
self.head_dim)
return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, past_key_value
def forward_flashattn_full(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel
attention_mask: [bsz, q_len]
"""
if output_attentions:
warnings.warn(
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
)
bsz, q_len, _ = hidden_states.size()
query_states = (
self.q_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
key_states = (
self.k_proj(hidden_states)
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(hidden_states)
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
# [bsz, q_len, nh, hd]
# [bsz, nh, q_len, hd]
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids
)
# Past Key value support
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# Flash attention codes from
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
# transform the data into the format required by flash attention
qkv = torch.stack(
[query_states, key_states, value_states], dim=2
) # [bsz, nh, 3, q_len, hd]
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
# We have disabled _prepare_decoder_attention_mask in LlamaModel
# the attention_mask should be the same as the key_padding_mask
key_padding_mask = attention_mask
nheads = qkv.shape[-2]
x = rearrange(qkv, "b s three h d -> b s (three h d)")
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
x_unpad = rearrange(
x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads
)
output_unpad = flash_attn_varlen_qkvpacked_func(
x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
)
output = rearrange(
pad_input(
rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz, q_len
),
"b s (h d) -> b s h d",
h=nheads,
)
output = output.reshape(bsz, q_len, self.num_heads, self.head_dim)
return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, past_key_value
def forward_noflashattn(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
group_size = int(q_len * group_size_ratio)
if q_len % group_size > 0:
raise ValueError("q_len %d should be divisible by group size %d."%(q_len, group_size))
num_group = q_len // group_size
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# shift
def shift(qkv, bsz, q_len, group_size, num_heads, head_dim):
qkv[:, num_heads // 2:] = qkv[:, num_heads // 2:].roll(-group_size // 2, dims=2)
qkv = qkv.transpose(1, 2).reshape(bsz * (q_len // group_size), group_size, num_heads, head_dim).transpose(1, 2)
return qkv
query_states = shift(query_states, bsz, q_len, group_size, self.num_heads, self.head_dim)
key_states = shift(key_states, bsz, q_len, group_size, self.num_heads, self.head_dim)
value_states = shift(value_states, bsz, q_len, group_size, self.num_heads, self.head_dim)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz * num_group, self.num_heads, group_size, group_size):
raise ValueError(
f"Attention weights should be of size {(bsz * num_group, self.num_heads, group_size, group_size)}, but is"
f" {attn_weights.size()}"
)
attention_mask = attention_mask[:, :, :group_size, :group_size].repeat(num_group, 1, 1, 1)
if attention_mask is not None:
if attention_mask.size() != (bsz * num_group, 1, group_size, group_size):
raise ValueError(
f"Attention mask should be of size {(bsz * num_group, 1, group_size, group_size)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp16
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float16).to(query_states.dtype) #torch.float32
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz * num_group, self.num_heads, group_size, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * num_group, self.num_heads, group_size, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
# shift back
attn_output[:, :, self.num_heads//2:] = attn_output[:, :, self.num_heads//2:].roll(group_size//2, dims=1)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Disable the transformation of the attention mask in LlamaModel as the flash attention
# requires the attention mask to be the same as the key_padding_mask
def _prepare_decoder_attention_mask(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# [bsz, seq_len]
return attention_mask
def apply_rotary_pos_emb_inference(q, k, cos_sin, position_ids):
gather_indices = position_ids[:, :, None, None] # [bsz, seq_len, 1, 1]
gather_indices = gather_indices.repeat(
1, 1, cos_sin[0].shape[1], cos_sin[0].shape[3]
)
bsz = gather_indices.shape[0]
cos, sin = (
torch.gather(x.transpose(1, 2).repeat(bsz, 1, 1, 1), 1, gather_indices)
for x in cos_sin
)
q, k = ((x * cos) + (rotate_half(x) * sin) for x in (q, k))
return q, k
def forward_flashattn_inference(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
warnings.warn(
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
)
bsz, q_len, _ = hidden_states.size()
kv_heads = getattr(self, "num_key_value_heads", self.num_heads)
q, k, v = (
op(hidden_states).view(bsz, q_len, nh, self.head_dim)
for op, nh in (
(self.q_proj, self.num_heads),
(self.k_proj, kv_heads),
(self.v_proj, kv_heads),
)
)
# shape: (b, s, num_heads, head_dim)
kv_seq_len = k.shape[1]
past_kv_len = 0
if past_key_value is not None:
past_kv_len = past_key_value[0].shape[2]
kv_seq_len += past_kv_len
cos_sin = self.rotary_emb(v, seq_len=kv_seq_len)
q, k = apply_rotary_pos_emb_inference(q, k, cos_sin, position_ids)
if past_key_value is not None:
assert (
flash_attn_version >= "2.1.0"
), "past_key_value support requires flash-attn >= 2.1.0"
# reuse k, v
k = torch.cat([past_key_value[0].transpose(1, 2), k], dim=1)
v = torch.cat([past_key_value[1].transpose(1, 2), v], dim=1)
past_key_value = (k.transpose(1, 2), v.transpose(1, 2)) if use_cache else None
if attention_mask is None:
output = flash_attn_func(q, k, v, 0.0, softmax_scale=None, causal=True).view(
bsz, q_len, -1
)
else:
q, indices, cu_q_lens, max_s = unpad_input(q, attention_mask[:, -q_len:])
# We can skip concat and call unpad twice but seems better to call unpad only once.
kv, _, cu_k_lens, max_k = unpad_input(
torch.stack((k, v), dim=2), attention_mask
)
output_unpad = flash_attn_varlen_kvpacked_func(
q,
kv,
cu_q_lens,
cu_k_lens,
max_s,
max_k,
0.0,
softmax_scale=None,
causal=True,
)
output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
output = pad_input(output_unpad, indices, bsz, q_len)
return self.o_proj(output), None, past_key_value
def _prepare_decoder_attention_mask_inference(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# [bsz, seq_len]
if past_key_values_length > 0 and attention_mask is not None:
attention_mask = torch.cat(
(
torch.full(
(input_shape[0], past_key_values_length),
True,
dtype=attention_mask.dtype,
device=attention_mask.device,
),
attention_mask,
),
dim=-1,
)
if attention_mask is not None and torch.all(attention_mask):
return None # This uses the faster call when training with full samples
return attention_mask
def replace_llama_attn(use_flash_attn=True, use_full=False, inference=False):
if use_flash_attn:
cuda_major, cuda_minor = torch.cuda.get_device_capability()
if cuda_major < 8:
warnings.warn(
"Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
)
if inference:
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask_inference
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward_flashattn_inference
else:
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
_prepare_decoder_attention_mask
)
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward_flashattn_full if use_full else forward_flashattn
else:
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward_noflashattn