Spaces:
Runtime error
Runtime error
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from transformers import ( | |
CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig,\ | |
SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig | |
) | |
from llava.s2wrapper import forward as multiscale_forward | |
class CLIPVisionTower(nn.Module): | |
def __init__( | |
self, | |
vision_tower_name: str="openai/clip-vit-large-patch14-336", | |
mm_vision_select_layer: int=-2, # v1.5 is -2 | |
mm_vision_select_feature: str="patch", | |
delay_load: bool=False, | |
requires_grad: bool=False, | |
scales: Optional[float] = None | |
): | |
super().__init__() | |
self.is_loaded = False | |
self.requires_grad = requires_grad | |
self.scales = scales | |
self.vision_tower_name = vision_tower_name | |
self.select_layer = mm_vision_select_layer | |
self.select_feature = mm_vision_select_feature | |
self.image_processor = None | |
self.vision_tower = None | |
if not delay_load: | |
self.load_model() | |
else: | |
if "clip" in self.vision_tower_name: | |
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) | |
elif "siglip" in self.vision_tower_name: | |
self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name) | |
else: | |
raise ValueError(f'Unsupported vision_tower_name: {self.vision_tower_name}') | |
def load_model(self): | |
if "clip" in self.vision_tower_name: | |
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) | |
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) | |
elif "siglip" in self.vision_tower_name: | |
self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name) | |
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) | |
else: | |
raise ValueError(f'Unsupported vision_tower_name: {self.vision_tower_name}') | |
self.vision_tower.requires_grad_(self.requires_grad) | |
self.is_loaded = True | |
def feature_select(self, image_forward_outs): | |
image_features = image_forward_outs.hidden_states[self.select_layer] | |
if self.select_feature == 'patch': | |
image_features = image_features[:, 1:] | |
elif self.select_feature == 'cls_patch': | |
image_features = image_features | |
else: | |
raise ValueError(f'Unexpected select feature: {self.select_feature}') | |
return image_features | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
if self.scales is None: | |
image_feature = self._forward_feature(images.unsqueeze(0)) | |
else: | |
image_feature = multiscale_forward( | |
self._forward_feature, | |
images.unsqueeze(0), | |
scales=self.scales, | |
num_prefix_token=0, | |
max_split_size=self.image_processor.size["height"] | |
) | |
#image_feature = self.feature_select(image_forward_out).to(image.dtype) | |
image_features.append(image_feature) | |
else: | |
if self.scales is None: | |
image_features = self._forward_feature(images) | |
else: | |
image_features = multiscale_forward( | |
self._forward_feature, | |
images, | |
scales=self.scales, | |
num_prefix_token=0, | |
max_split_size=self.image_processor.size["height"] | |
) | |
#image_features = self.feature_select(image_forward_outs).to(images.dtype) | |
return image_features | |
def _forward_feature(self, inputs): | |
return self.feature_select(self.vision_tower(inputs.to(device=self.device, dtype=self.dtype), output_hidden_states=True)) | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_tower.dtype | |
def device(self): | |
return self.vision_tower.device | |
def config(self): | |
if self.is_loaded: | |
return self.vision_tower.config | |
else: | |
return self.cfg_only | |
def hidden_size(self): | |
if self.scales is None: | |
return self.config.hidden_size | |
return self.config.hidden_size*len(self.scales) | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |