kamalkraj's picture
add app.py
75cff75
import gradio as gr
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms
import torchxrayvision as xrv
def classify_image(img, model_name):
model = xrv.models.get_model(model_name, from_hf_hub=True)
img = xrv.datasets.normalize(img, 255)
# Check that images are 2D arrays
if len(img.shape) > 2:
img = img[:, :, 0]
if len(img.shape) < 2:
print("error, dimension lower than 2 for image")
# Add color channel
img = img[None, :, :]
transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()])
img = transform(img)
with torch.no_grad():
img = torch.from_numpy(img).unsqueeze(0)
preds = model(img).cpu()
output = {
k: float(v)
for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy())
}
return output
gr.Interface(
fn=classify_image,
inputs=[
gr.Image(shape=(224, 224), image_mode="L"),
gr.Dropdown(
[
"densenet121-res224-all",
"densenet121-res224-nih",
"densenet121-res224-pc",
"densenet121-res224-chex",
"densenet121-res224-rsna",
"densenet121-res224-mimic_nb",
"densenet121-res224-mimic_ch",
"resnet50-res512-all",
],
value="densenet121-res224-all",
type="value",
label="Pre-trained model",
),
],
outputs=gr.outputs.Label(),
title="Classify chest x-ray image",
examples=[
["16747_3_1.jpg", "densenet121-res224-all"],
["00000001_000.png", "resnet50-res512-all"],
],
).launch()