cryptocalypse commited on
Commit
7347eec
1 Parent(s): c8b6368

Me class, memory bugs, localfiles search and indexing, internet archive think questions for future auto dataset preparing

Browse files
lib/__pycache__/entropy.cpython-39.pyc ADDED
Binary file (3.64 kB). View file
 
lib/__pycache__/events.cpython-39.pyc ADDED
Binary file (5.83 kB). View file
 
lib/__pycache__/files.cpython-39.pyc ADDED
Binary file (1.2 kB). View file
 
lib/__pycache__/gematria.cpython-39.pyc ADDED
Binary file (7.07 kB). View file
 
lib/__pycache__/grapher.cpython-39.pyc ADDED
Binary file (4.29 kB). View file
 
lib/__pycache__/me.cpython-39.pyc ADDED
Binary file (6.42 kB). View file
 
lib/__pycache__/memory.cpython-39.pyc ADDED
Binary file (3.23 kB). View file
 
lib/__pycache__/notarikon.cpython-39.pyc ADDED
Binary file (1.12 kB). View file
 
lib/__pycache__/pipes.cpython-39.pyc ADDED
Binary file (4.88 kB). View file
 
lib/__pycache__/sonsofstars.cpython-39.pyc ADDED
Binary file (35.5 kB). View file
 
lib/__pycache__/temuraeh.cpython-39.pyc ADDED
Binary file (1.22 kB). View file
 
lib/__pycache__/triggers.cpython-39.pyc ADDED
Binary file (2.69 kB). View file
 
lib/__pycache__/ziruph.cpython-39.pyc ADDED
Binary file (764 Bytes). View file
 
lib/files.py CHANGED
@@ -6,21 +6,24 @@ class TextFinder:
6
 
7
  def find_matches(self, text):
8
  matches = []
9
- files = os.listdir(self.folder)
10
-
11
- for file in files:
12
- file_path = os.path.join(self.folder, file)
13
- if os.path.isfile(file_path):
14
- with open(file_path, 'r', encoding='utf-8') as f:
15
- content = f.read()
16
- index = content.find(text)
17
- while index != -1:
18
- start = max(content.rfind('\n', 0, index), content.rfind('.', 0, index))
19
- end = min(content.find('\n', index), content.find('.', index))
20
- if start != -1 and end != -1:
21
- matches.append(content[start+1:end].strip())
22
- index = content.find(text, index + 1)
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  return matches
25
 
26
  # Example usage:
@@ -28,4 +31,3 @@ if __name__ == "__main__":
28
  finder = TextFinder('example_folder')
29
  matches = finder.find_matches('text_to_find')
30
  print(matches)
31
-
 
6
 
7
  def find_matches(self, text):
8
  matches = []
9
+ for root, _, files in os.walk(self.folder):
10
+ for file in files:
11
+ print(file)
12
+ file_path = os.path.join(root, file)
 
 
 
 
 
 
 
 
 
 
13
 
14
+ if os.path.isfile(file_path):
15
+ print(file_path)
16
+ with open(file_path, 'r', encoding='utf-8') as f:
17
+ content = f.read()
18
+ index = content.find(text)
19
+ while index != -1:
20
+ start = max(content.rfind('\n', 0, index), content.rfind('\n', 0, index))
21
+ #start = max(content.rfind('\n', 0, index))
22
+ end = min(content.find('\n', index), content.find('\n', index))
23
+ #end = min(content.find('\n', index))
24
+ if start != -1 and end != -1:
25
+ matches.append(content[start+1:end].strip())
26
+ index = content.find(text, index + 1)
27
  return matches
28
 
29
  # Example usage:
 
31
  finder = TextFinder('example_folder')
32
  matches = finder.find_matches('text_to_find')
33
  print(matches)
 
lib/me.py CHANGED
@@ -12,14 +12,24 @@ import internetarchive
12
 
13
 
14
  ## Initialize classes
15
- longMem = TextFinder("resources")
16
  coreAi = AIAssistant()
17
- memory = MemoriaRobotNLP(max_size=200000)
18
- grapher = Grapher(memoria_nlp)
19
  sensor_request = APIRequester()
20
  events = EventManager()
21
- triggers = Trigger()
22
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  ## Define I Role properties
25
  class ownProperties:
@@ -33,28 +43,27 @@ class ownProperties:
33
  self.equipo = equipo
34
  self.historia = historia
35
 
36
- # Crear una instancia de PersonajeRol basada en el JSON proporcionado
37
- sophia_prop = ownProperties(
38
- nombre="Sophia",
39
- clase="Characteromant",
40
- raza="Epinoia",
41
- nivel=10,
42
- atributos={
43
- "fuerza": 1,
44
- "destreza": 99,
45
- "constitucion": 1,
46
- "inteligencia": 66,
47
- "sabiduria": 80,
48
- "carisma": 66
49
  },
50
- reglas_de_comportamiento = [""],
51
- goals = ["",""],
52
- dont_like = [""],
53
-
54
- habilidades=["ELS", "Cyphers", "Kabbalah", "Wisdom", "Ephimerous","Metamorphing"],
55
- equipo=["Python3", "2VCPU", "16 gb RAM", "god", "word","network","transformers"],
56
- historia=sonsofstars
57
- )
58
 
59
 
60
  ## Define I class
@@ -78,7 +87,7 @@ class I:
78
 
79
  ## create questions from internet archive
80
  def crear_preguntas(self,txt):
81
- search = internetarchive.search_items(sys.argv[1])
82
  res = []
83
  for result in search:
84
  print(result['identifier'])
@@ -102,40 +111,62 @@ class I:
102
 
103
  return res
104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
  # generate thinks and questions over prompt data, compare with ourself datasets, return matches with sentiment analysys
107
  def think_gen(self,txt):
108
 
109
  think_about = longMem.find_matches(txt)
110
- for T in thinkabout:
 
111
  ## get subject by entropy or pos tagger
112
- subjects = coreAi.entity_pos_tagger(txt)
 
113
  ## get NC from , filtering from gramatical tags
114
- subjects_low = coreAi.grammatical_pos_tagger(txt)
 
115
  ## generate questoins
116
  questions=[]
117
  ## create cuestions from internet archive books
118
  for sub in subjects:
119
- questions.append(this.crear_preguntas(txt))
120
 
121
  ## fast checks from gematria similarity
122
  ##questions_togem =
123
  ## gematria_search =
124
 
125
  questions_subj=[]
126
- for q in questoins:
127
  questions_subj.append(coreAi.entity_pos_tagger(q))
128
 
129
- memoryShortTags = memory.buscar_conceptos_patron(subjects)
130
 
131
  ## get tags of subject
132
  subj_tags = coreAi.entity_pos_tagger(T)
133
 
134
  for sub in subjects:
135
- memory.agregar_concepto(sub,",".(questions_subj)+",".join(memoryShortTags))
136
- memory.agregar_concepto(sub,T+",".join(memoryShortTags))
137
-
138
 
 
139
  ## check if something is need to add to ourself datasets
140
  ## make sentiment analys
141
  ## check if dopamine prompt is true or false over the information
 
12
 
13
 
14
  ## Initialize classes
15
+ longMem = TextFinder("./resources/")
16
  coreAi = AIAssistant()
17
+ memory = MemoryRobotNLP(max_size=200000)
18
+ grapher = Grapher(memory)
19
  sensor_request = APIRequester()
20
  events = EventManager()
21
+ trigger = Trigger(["tag1", "tag2"], ["tag3", "tag4"], [datetime.time(10, 0), datetime.time(15, 0)], "Event1")
22
 
23
+ # Añadir una acción al trigger
24
+ trigger.add_action(action_function)
25
+
26
+ # Añadir una fuente al trigger
27
+ trigger.add_source("https://example.com/api/data")
28
+
29
+ # Simular la comprobación periódica del trigger (aquí se usaría en un bucle de tiempo real)
30
+ current_tags = {"tag1", "tag2", "tag3"}
31
+ current_time = datetime.datetime.now().time()
32
+ trigger.check_trigger(current_tags, current_time)
33
 
34
  ## Define I Role properties
35
  class ownProperties:
 
43
  self.equipo = equipo
44
  self.historia = historia
45
 
46
+ # Create an instance of a CharacterRole based on the provided JSON
47
+ sophia_prop = {
48
+ "name": "Sophia",
49
+ "class": "Characteromant",
50
+ "race": "Epinoia",
51
+ "level": 10,
52
+ "attributes": {
53
+ "strength": 1,
54
+ "dexterity": 99,
55
+ "constitution": 1,
56
+ "intelligence": 66,
57
+ "wisdom": 80,
58
+ "charisma": 66
59
  },
60
+ "behavioral_rules": [""],
61
+ "goals": ["", ""],
62
+ "dislikes": [""],
63
+ "abilities": ["ELS", "Cyphers", "Kabbalah", "Wisdom", "Ephimerous", "Metamorphing"],
64
+ "equipment": ["Python3", "2VCPU", "16 gb RAM", "god", "word", "network", "transformers"],
65
+ "story": sons_of_stars
66
+ }
 
67
 
68
 
69
  ## Define I class
 
87
 
88
  ## create questions from internet archive
89
  def crear_preguntas(self,txt):
90
+ search = internetarchive.search_items(txt)
91
  res = []
92
  for result in search:
93
  print(result['identifier'])
 
111
 
112
  return res
113
 
114
+ # generate ShortMem from LongTerm and questions over prompt data, compare with ourself datasets, return matches with sentiment analysys
115
+ def longToShort(self,txt):
116
+
117
+ think_about = longMem.find_matches(txt)
118
+ print(think_about)
119
+ for T in think_about:
120
+ ## get subject by entropy or pos tagger
121
+ subjects = coreAi.entity_pos_tagger(T)
122
+ subjects_filtered=[]
123
+ for sub in subjects:
124
+ if "PER" in sub["entity"] or "ORG" in sub["entity"] or "LOC" in sub["entity"]:
125
+ subjects_filtered.append(sub["word"])
126
+
127
+
128
+
129
+ for sub in subjects_filtered:
130
+ memory.add_concept(sub,T)
131
+
132
+ return memory
133
 
134
  # generate thinks and questions over prompt data, compare with ourself datasets, return matches with sentiment analysys
135
  def think_gen(self,txt):
136
 
137
  think_about = longMem.find_matches(txt)
138
+ print(think_about)
139
+ for T in think_about:
140
  ## get subject by entropy or pos tagger
141
+ subjects = coreAi.entity_pos_tagger(T)
142
+ print(subjects)
143
  ## get NC from , filtering from gramatical tags
144
+ subjects_low = coreAi.grammatical_pos_tagger(T)
145
+ #print(subjects_low)
146
  ## generate questoins
147
  questions=[]
148
  ## create cuestions from internet archive books
149
  for sub in subjects:
150
+ questions.append(self.crear_preguntas(sub))
151
 
152
  ## fast checks from gematria similarity
153
  ##questions_togem =
154
  ## gematria_search =
155
 
156
  questions_subj=[]
157
+ for q in questions_subj:
158
  questions_subj.append(coreAi.entity_pos_tagger(q))
159
 
160
+ memoryShortTags = memory.search_concept_pattern(subjects)
161
 
162
  ## get tags of subject
163
  subj_tags = coreAi.entity_pos_tagger(T)
164
 
165
  for sub in subjects:
166
+ memory.add_concept(sub,","+questions_subj+",".join(memoryShortTags))
167
+ memory.add_concept(sub,T+",".join(memoryShortTags))
 
168
 
169
+ return memory
170
  ## check if something is need to add to ourself datasets
171
  ## make sentiment analys
172
  ## check if dopamine prompt is true or false over the information
lib/memory.py CHANGED
@@ -1,42 +1,45 @@
1
- class MemoriaRobotNLP:
 
 
2
  def __init__(self, max_size):
3
  self.max_size = max_size
4
- self.memoria = {}
5
-
6
- def agregar_concepto(self, concepto, strings):
7
- if concepto not in self.memoria:
8
- self.memoria[concepto] = []
9
 
10
- for string, prioridad in strings:
11
- self.memoria[concepto].append((string, prioridad))
 
 
 
 
 
12
 
13
- def eliminar_concepto(self, concepto):
14
- if concepto in self.memoria:
15
- del self.memoria[concepto]
16
 
17
- def agregar_string(self, concepto, string, prioridad):
18
- if concepto not in self.memoria:
19
- self.memoria[concepto] = []
20
 
21
- self.memoria[concepto].append((string, prioridad))
22
 
23
- def eliminar_string(self, concepto, string):
24
- if concepto in self.memoria:
25
- self.memoria[concepto] = [(s, p) for s, p in self.memoria[concepto] if s != string]
26
 
27
- def buscar_conceptos_patron(self, patron):
28
  resultados = {}
29
 
30
- for concepto, strings in self.memoria.items():
31
  for string, _ in strings:
32
- if re.search(patron, string):
33
  if concepto not in resultados:
34
  resultados[concepto] = []
35
  resultados[concepto].append(string)
36
 
37
- return resultados
38
- def obtener_conceptos_acotados(self, espacio_disponible):
39
- memoria_ordenada = sorted(self.memoria.items(), key=lambda x: sum(prioridad for _, prioridad in x[1]), reverse=True)
40
  espacio_utilizado = 0
41
  conceptos_acotados = []
42
 
@@ -56,22 +59,22 @@ class MemoriaRobotNLP:
56
 
57
  if __name__ == "__main__":
58
 
59
- memoria_robot = MemoriaRobotNLP(max_size=100)
60
 
61
- memoria_robot.agregar_concepto("animales", [("perro", 0.8), ("gato", 0.7), ("pájaro", 0.5)])
62
- memoria_robot.agregar_concepto("colores", [("rojo", 0.9), ("verde", 0.6), ("azul", 0.7)])
63
 
64
  print("Memoria completa:")
65
- print(memoria_robot.memoria)
66
 
67
- memoria_robot.agregar_string("animales", "pez", 0.6)
68
- memoria_robot.eliminar_string("colores", "verde")
69
- memoria_robot.eliminar_concepto("colores")
70
 
71
  print("\nMemoria después de modificaciones:")
72
- print(memoria_robot.memoria)
73
 
74
- conceptos_acotados = memoria_robot.obtener_conceptos_acotados(50)
75
  print("\nConceptos acotados a un tamaño máximo de memoria:")
76
  print(conceptos_acotados)
77
 
 
1
+ import re
2
+
3
+ class MemoryRobotNLP:
4
  def __init__(self, max_size):
5
  self.max_size = max_size
6
+ self.memory = {}
 
 
 
 
7
 
8
+ def add_concept(self, concepto, string):
9
+
10
+ if concepto not in self.memory:
11
+ self.memory[concepto] = []
12
+ #evaluate priority calculation
13
+ priority = 0.5
14
+ self.memory[concepto].append((string, priority))
15
 
16
+ def delete_concept(self, concepto):
17
+ if concepto in self.memory:
18
+ del self.memory[concepto]
19
 
20
+ def add_string(self, concepto, string, prioridad):
21
+ if concepto not in self.memory:
22
+ self.memory[concepto] = []
23
 
24
+ self.memory[concepto].append((string, prioridad))
25
 
26
+ def delete_string(self, concepto, string):
27
+ if concepto in self.memory:
28
+ self.memory[concepto] = [(s, p) for s, p in self.memory[concepto] if s != string]
29
 
30
+ def search_concept_pattern(self, patron):
31
  resultados = {}
32
 
33
+ for concepto, strings in self.memory.items():
34
  for string, _ in strings:
35
+ if re.search(patron, string,re.IGNORECASE):
36
  if concepto not in resultados:
37
  resultados[concepto] = []
38
  resultados[concepto].append(string)
39
 
40
+ return resultados
41
+ def get_concepts_substrings(self, espacio_disponible):
42
+ memoria_ordenada = sorted(self.memory.items(), key=lambda x: sum(prioridad for _, prioridad in x[1]), reverse=True)
43
  espacio_utilizado = 0
44
  conceptos_acotados = []
45
 
 
59
 
60
  if __name__ == "__main__":
61
 
62
+ memoria_robot = MemoryRobotNLP(max_size=100)
63
 
64
+ memoria_robot.add_concept("animales", [("perro", 0.8), ("gato", 0.7), ("pájaro", 0.5)])
65
+ memoria_robot.add_concept("colores", [("rojo", 0.9), ("verde", 0.6), ("azul", 0.7)])
66
 
67
  print("Memoria completa:")
68
+ print(memoria_robot.memory)
69
 
70
+ memoria_robot.add_string("animales", "pez", 0.6)
71
+ memoria_robot.delete_string("colores", "verde")
72
+ memoria_robot.delete_concepto("colores")
73
 
74
  print("\nMemoria después de modificaciones:")
75
+ print(memoria_robot.memory)
76
 
77
+ conceptos_acotados = memoria_robot.get_concepts_substrings(50)
78
  print("\nConceptos acotados a un tamaño máximo de memoria:")
79
  print(conceptos_acotados)
80
 
lib/pipes.py CHANGED
@@ -4,6 +4,9 @@ from transformers import AutoModelForSeq2SeqLM
4
  from samplings import top_p_sampling, temperature_sampling
5
  import torch
6
  from sentence_transformers import SentenceTransformer, util
 
 
 
7
 
8
  class AIAssistant:
9
  def __init__(self):
@@ -23,11 +26,11 @@ class AIAssistant:
23
 
24
 
25
  ## entity classifier
26
- def entity_pos_tagger(self, example):
27
  tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
28
  model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
29
  nlp = pipeline("ner", model=model, tokenizer=tokenizer)
30
- ner_results = nlp(example)
31
  return ner_results
32
 
33
 
@@ -44,7 +47,7 @@ class AIAssistant:
44
  ## check similarity among sentences (group of tokens (words))
45
  def similarity_tag(self, sentenceA,sentenceB):
46
  res=[]
47
- model = SentenceTransformer('abbasgolestani/ag-nli-bert-mpnet-base-uncased-sentence-similarity-v1') nli-mpnet-base-v2
48
 
49
  # Two lists of sentences
50
  #sentences1 = ['I am honored to be given the opportunity to help make our company better',
@@ -56,7 +59,7 @@ class AIAssistant:
56
  # 'Definitely our company vision will be the next breakthrough to change the world and I’m so happy and proud to work here']
57
 
58
  sentences1 = sentenceA
59
- sentences2 = sentencesB
60
  #Compute embedding for both lists
61
  embeddings1 = model.encode(sentences1, convert_to_tensor=True)
62
  embeddings2 = model.encode(sentences2, convert_to_tensor=True)
@@ -66,10 +69,29 @@ class AIAssistant:
66
 
67
  #Output the pairs with their score
68
  for i in range(len(sentences1)):
69
- res.append({"A": format(sentences1[i], "B":sentences2[i], "score":cosine_scores[i][i]})
 
 
 
 
70
  #print("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i]))
71
 
72
  return res
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  ## text to stable difusor generated image
74
  def text_to_image_generation(self, prompt, n_steps=40, high_noise_frac=0.8):
75
  base = DiffusionPipeline.from_pretrained(
 
4
  from samplings import top_p_sampling, temperature_sampling
5
  import torch
6
  from sentence_transformers import SentenceTransformer, util
7
+ from datasets import load_dataset
8
+ import soundfile as sf
9
+
10
 
11
  class AIAssistant:
12
  def __init__(self):
 
26
 
27
 
28
  ## entity classifier
29
+ def entity_pos_tagger(self, txt):
30
  tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
31
  model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
32
  nlp = pipeline("ner", model=model, tokenizer=tokenizer)
33
+ ner_results = nlp(txt)
34
  return ner_results
35
 
36
 
 
47
  ## check similarity among sentences (group of tokens (words))
48
  def similarity_tag(self, sentenceA,sentenceB):
49
  res=[]
50
+ model = SentenceTransformer('abbasgolestani/ag-nli-bert-mpnet-base-uncased-sentence-similarity-v1')
51
 
52
  # Two lists of sentences
53
  #sentences1 = ['I am honored to be given the opportunity to help make our company better',
 
59
  # 'Definitely our company vision will be the next breakthrough to change the world and I’m so happy and proud to work here']
60
 
61
  sentences1 = sentenceA
62
+ sentences2 = sentenceB
63
  #Compute embedding for both lists
64
  embeddings1 = model.encode(sentences1, convert_to_tensor=True)
65
  embeddings2 = model.encode(sentences2, convert_to_tensor=True)
 
69
 
70
  #Output the pairs with their score
71
  for i in range(len(sentences1)):
72
+ try:
73
+ res.append({"A": sentences1[i], "B":sentences2[i], "score":cosine_scores[i][i]})
74
+ except:
75
+ pass
76
+
77
  #print("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i]))
78
 
79
  return res
80
+
81
+
82
+
83
+ ## text to speech
84
+ def texto_to_speech(self,txt):
85
+ synthesiser = pipeline("text-to-speech", "microsoft/speecht5_tts")
86
+
87
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
88
+ speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
89
+ # You can replace this embedding with your own as well.
90
+
91
+ speech = synthesiser(txt, forward_params={"speaker_embeddings": speaker_embedding})
92
+ sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
93
+
94
+ return speech
95
  ## text to stable difusor generated image
96
  def text_to_image_generation(self, prompt, n_steps=40, high_noise_frac=0.8):
97
  base = DiffusionPipeline.from_pretrained(