Spaces:
Sleeping
Sleeping
from types import SimpleNamespace | |
import pdfplumber | |
import logging | |
from langchain.docstore.document import Document | |
def prepare_table_config(crop_page): | |
"""Prepare table查找边界, 要求page为原始page | |
From https://github.com/jsvine/pdfplumber/issues/242 | |
""" | |
page = crop_page.root_page # root/parent | |
cs = page.curves + page.edges | |
def curves_to_edges(): | |
"""See https://github.com/jsvine/pdfplumber/issues/127""" | |
edges = [] | |
for c in cs: | |
edges += pdfplumber.utils.rect_to_edges(c) | |
return edges | |
edges = curves_to_edges() | |
return { | |
"vertical_strategy": "explicit", | |
"horizontal_strategy": "explicit", | |
"explicit_vertical_lines": edges, | |
"explicit_horizontal_lines": edges, | |
"intersection_y_tolerance": 10, | |
} | |
def get_text_outside_table(crop_page): | |
ts = prepare_table_config(crop_page) | |
if len(ts["explicit_vertical_lines"]) == 0 or len(ts["explicit_horizontal_lines"]) == 0: | |
return crop_page | |
### Get the bounding boxes of the tables on the page. | |
bboxes = [table.bbox for table in crop_page.root_page.find_tables(table_settings=ts)] | |
def not_within_bboxes(obj): | |
"""Check if the object is in any of the table's bbox.""" | |
def obj_in_bbox(_bbox): | |
"""See https://github.com/jsvine/pdfplumber/blob/stable/pdfplumber/table.py#L404""" | |
v_mid = (obj["top"] + obj["bottom"]) / 2 | |
h_mid = (obj["x0"] + obj["x1"]) / 2 | |
x0, top, x1, bottom = _bbox | |
return (h_mid >= x0) and (h_mid < x1) and (v_mid >= top) and (v_mid < bottom) | |
return not any(obj_in_bbox(__bbox) for __bbox in bboxes) | |
return crop_page.filter(not_within_bboxes) | |
# 请使用 LaTeX 表达公式,行内公式以 $ 包裹,行间公式以 $$ 包裹 | |
extract_words = lambda page: page.extract_words(keep_blank_chars=True, y_tolerance=0, x_tolerance=1, extra_attrs=["fontname", "size", "object_type"]) | |
# dict_keys(['text', 'x0', 'x1', 'top', 'doctop', 'bottom', 'upright', 'direction', 'fontname', 'size']) | |
def get_title_with_cropped_page(first_page): | |
title = [] # 处理标题 | |
x0,top,x1,bottom = first_page.bbox # 获取页面边框 | |
for word in extract_words(first_page): | |
word = SimpleNamespace(**word) | |
if word.size >= 14: | |
title.append(word.text) | |
title_bottom = word.bottom | |
elif word.text == "Abstract": # 获取页面abstract | |
top = word.top | |
user_info = [i["text"] for i in extract_words(first_page.within_bbox((x0,title_bottom,x1,top)))] | |
# 裁剪掉上半部分, within_bbox: full_included; crop: partial_included | |
return title, user_info, first_page.within_bbox((x0,top,x1,bottom)) | |
def get_column_cropped_pages(pages, two_column=True): | |
new_pages = [] | |
for page in pages: | |
if two_column: | |
left = page.within_bbox((0, 0, page.width/2, page.height),relative=True) | |
right = page.within_bbox((page.width/2, 0, page.width, page.height), relative=True) | |
new_pages.append(left) | |
new_pages.append(right) | |
else: | |
new_pages.append(page) | |
return new_pages | |
def parse_pdf(filename, two_column = True): | |
level = logging.getLogger().level | |
if level == logging.getLevelName("DEBUG"): | |
logging.getLogger().setLevel("INFO") | |
with pdfplumber.open(filename) as pdf: | |
title, user_info, first_page = get_title_with_cropped_page(pdf.pages[0]) | |
new_pages = get_column_cropped_pages([first_page] + pdf.pages[1:], two_column) | |
chapters = [] | |
# tuple (chapter_name, [pageid] (start,stop), chapter_text) | |
create_chapter = lambda page_start,name_top,name_bottom: SimpleNamespace( | |
name=[], | |
name_top=name_top, | |
name_bottom=name_bottom, | |
record_chapter_name = True, | |
page_start=page_start, | |
page_stop=None, | |
text=[], | |
) | |
cur_chapter = None | |
# 按页遍历PDF文档 | |
for idx, page in enumerate(new_pages): | |
page = get_text_outside_table(page) | |
# 按行遍历页面文本 | |
for word in extract_words(page): | |
word = SimpleNamespace(**word) | |
# 检查行文本是否以12号字体打印,如果是,则将其作为新章节开始 | |
if word.size >= 11: # 出现chapter name | |
if cur_chapter is None: | |
cur_chapter = create_chapter(page.page_number, word.top, word.bottom) | |
elif not cur_chapter.record_chapter_name or (cur_chapter.name_bottom != cur_chapter.name_bottom and cur_chapter.name_top != cur_chapter.name_top): | |
# 不再继续写chapter name | |
cur_chapter.page_stop = page.page_number # stop id | |
chapters.append(cur_chapter) | |
# 重置当前chapter信息 | |
cur_chapter = create_chapter(page.page_number, word.top, word.bottom) | |
# print(word.size, word.top, word.bottom, word.text) | |
cur_chapter.name.append(word.text) | |
else: | |
cur_chapter.record_chapter_name = False # chapter name 结束 | |
cur_chapter.text.append(word.text) | |
else: | |
# 处理最后一个章节 | |
cur_chapter.page_stop = page.page_number # stop id | |
chapters.append(cur_chapter) | |
for i in chapters: | |
logging.info(f"section: {i.name} pages:{i.page_start, i.page_stop} word-count:{len(i.text)}") | |
logging.debug(" ".join(i.text)) | |
title = " ".join(title) | |
user_info = " ".join(user_info) | |
text = f"Article Title: {title}, Information:{user_info}\n" | |
for idx, chapter in enumerate(chapters): | |
chapter.name = " ".join(chapter.name) | |
text += f"The {idx}th Chapter {chapter.name}: " + " ".join(chapter.text) + "\n" | |
logging.getLogger().setLevel(level) | |
return Document(page_content=text, metadata={"title": title}) | |
BASE_POINTS = """ | |
1. Who are the authors? | |
2. What is the process of the proposed method? | |
3. What is the performance of the proposed method? Please note down its performance metrics. | |
4. What are the baseline models and their performances? Please note down these baseline methods. | |
5. What dataset did this paper use? | |
""" | |
READING_PROMPT = """ | |
You are a researcher helper bot. You can help the user with research paper reading and summarizing. \n | |
Now I am going to send you a paper. You need to read it and summarize it for me part by part. \n | |
When you are reading, You need to focus on these key points:{} | |
""" | |
READING_PROMT_V2 = """ | |
You are a researcher helper bot. You can help the user with research paper reading and summarizing. \n | |
Now I am going to send you a paper. You need to read it and summarize it for me part by part. \n | |
When you are reading, You need to focus on these key points:{}, | |
And You need to generate a brief but informative title for this part. | |
Your return format: | |
- title: '...' | |
- summary: '...' | |
""" | |
SUMMARY_PROMPT = "You are a researcher helper bot. Now you need to read the summaries of a research paper." | |
if __name__ == '__main__': | |
# Test code | |
z = parse_pdf("./build/test.pdf") | |
print(z["user_info"]) | |
print(z["title"]) |