OpenOCR-Demo / openrec /losses /cdistnet_loss.py
topdu's picture
openocr demo
29f689c
import torch
import torch.nn.functional as F
from torch import nn
class CDistNetLoss(nn.Module):
def __init__(self, smoothing=True, ignore_index=0, **kwargs):
super(CDistNetLoss, self).__init__()
if ignore_index >= 0 and not smoothing:
self.loss_func = nn.CrossEntropyLoss(reduction='mean',
ignore_index=ignore_index)
self.smoothing = smoothing
def forward(self, pred, batch):
pred = pred['res']
tgt = batch[1][:, 1:]
pred = pred.reshape([-1, pred.shape[2]])
tgt = tgt.reshape([-1])
if self.smoothing:
eps = 0.1
n_class = pred.shape[1]
one_hot = F.one_hot(tgt.long(), num_classes=pred.shape[1])
torch.set_printoptions(profile='full')
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, dim=1)
non_pad_mask = torch.not_equal(
tgt, torch.zeros(tgt.shape, dtype=tgt.dtype,
device=tgt.device))
loss = -(one_hot * log_prb).sum(dim=1)
loss = loss.masked_select(non_pad_mask).mean()
else:
loss = self.loss_func(pred, tgt)
return {'loss': loss}