OpenOCR-Demo / openrec /modeling /encoders /svtrv2_lnconv_two33.py
topdu's picture
openocr demo
29f689c
raw
history blame
15.8 kB
import numpy as np
import torch
import torch.nn as nn
from torch.nn.init import kaiming_normal_, ones_, trunc_normal_, zeros_
from openrec.modeling.common import DropPath, Identity, Mlp
class ConvBNLayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=0,
bias=False,
groups=1,
act=nn.GELU,
):
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=bias,
)
self.norm = nn.BatchNorm2d(out_channels)
self.act = act()
def forward(self, inputs):
out = self.conv(inputs)
out = self.norm(out)
out = self.act(out)
return out
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
self.dim = dim
self.head_dim = dim // num_heads
self.scale = qk_scale or self.head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = q @ k.transpose(-2, -1) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, self.dim)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
eps=1e-6,
):
super().__init__()
mlp_hidden_dim = int(dim * mlp_ratio)
self.norm1 = norm_layer(dim, eps=eps)
self.mixer = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
self.norm2 = norm_layer(dim, eps=eps)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, x):
x = self.norm1(x + self.drop_path(self.mixer(x)))
x = self.norm2(x + self.drop_path(self.mlp(x)))
return x
class FlattenBlockRe2D(Block):
def __init__(self,
dim,
num_heads,
mlp_ratio=4,
qkv_bias=False,
qk_scale=None,
drop=0,
attn_drop=0,
drop_path=0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
eps=0.000001):
super().__init__(dim, num_heads, mlp_ratio, qkv_bias, qk_scale, drop,
attn_drop, drop_path, act_layer, norm_layer, eps)
def forward(self, x):
B, C, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = super().forward(x)
x = x.transpose(1, 2).reshape(B, C, H, W)
return x
class ConvBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
eps=1e-6,
num_conv=2,
kernel_size=3,
):
super().__init__()
mlp_hidden_dim = int(dim * mlp_ratio)
self.norm1 = norm_layer(dim, eps=eps)
self.mixer = nn.Sequential(*[
nn.Conv2d(
dim, dim, kernel_size, 1, kernel_size // 2, groups=num_heads)
for i in range(num_conv)
])
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
self.norm2 = norm_layer(dim, eps=eps)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, x):
C, H, W = x.shape[1:]
x = x + self.drop_path(self.mixer(x))
x = self.norm1(x.flatten(2).transpose(1, 2))
x = self.norm2(x + self.drop_path(self.mlp(x)))
x = x.transpose(1, 2).reshape(-1, C, H, W)
return x
class FlattenTranspose(nn.Module):
def forward(self, x):
return x.flatten(2).transpose(1, 2)
class SubSample2D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
stride=[2, 1],
):
super().__init__()
self.conv = nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1)
self.norm = nn.LayerNorm(out_channels)
def forward(self, x, sz):
# print(x.shape)
x = self.conv(x)
C, H, W = x.shape[1:]
x = self.norm(x.flatten(2).transpose(1, 2))
x = x.transpose(1, 2).reshape(-1, C, H, W)
return x, [H, W]
class SubSample1D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
stride=[2, 1],
):
super().__init__()
self.conv = nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1)
self.norm = nn.LayerNorm(out_channels)
def forward(self, x, sz):
C = x.shape[-1]
x = x.transpose(1, 2).reshape(-1, C, sz[0], sz[1])
x = self.conv(x)
C, H, W = x.shape[1:]
x = self.norm(x.flatten(2).transpose(1, 2))
return x, [H, W]
class IdentitySize(nn.Module):
def forward(self, x, sz):
return x, sz
class SVTRStage(nn.Module):
def __init__(self,
dim=64,
out_dim=256,
depth=3,
mixer=['Local'] * 3,
kernel_sizes=[3] * 3,
sub_k=[2, 1],
num_heads=2,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path=[0.1] * 3,
norm_layer=nn.LayerNorm,
act=nn.GELU,
eps=1e-6,
num_conv=[2] * 3,
downsample=None,
**kwargs):
super().__init__()
self.dim = dim
self.blocks = nn.Sequential()
for i in range(depth):
if mixer[i] == 'Conv':
self.blocks.append(
ConvBlock(dim=dim,
kernel_size=kernel_sizes[i],
num_heads=num_heads,
mlp_ratio=mlp_ratio,
drop=drop_rate,
act_layer=act,
drop_path=drop_path[i],
norm_layer=norm_layer,
eps=eps,
num_conv=num_conv[i]))
else:
if mixer[i] == 'Global':
block = Block
elif mixer[i] == 'FGlobal':
block = Block
self.blocks.append(FlattenTranspose())
elif mixer[i] == 'FGlobalRe2D':
block = FlattenBlockRe2D
self.blocks.append(
block(
dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=act,
attn_drop=attn_drop_rate,
drop_path=drop_path[i],
norm_layer=norm_layer,
eps=eps,
))
if downsample:
if mixer[-1] == 'Conv' or mixer[-1] == 'FGlobalRe2D':
self.downsample = SubSample2D(dim, out_dim, stride=sub_k)
else:
self.downsample = SubSample1D(dim, out_dim, stride=sub_k)
else:
self.downsample = IdentitySize()
def forward(self, x, sz):
for blk in self.blocks:
x = blk(x)
x, sz = self.downsample(x, sz)
return x, sz
class ADDPosEmbed(nn.Module):
def __init__(self, feat_max_size=[8, 32], embed_dim=768):
super().__init__()
pos_embed = torch.zeros(
[1, feat_max_size[0] * feat_max_size[1], embed_dim],
dtype=torch.float32)
trunc_normal_(pos_embed, mean=0, std=0.02)
self.pos_embed = nn.Parameter(
pos_embed.transpose(1, 2).reshape(1, embed_dim, feat_max_size[0],
feat_max_size[1]),
requires_grad=True,
)
def forward(self, x):
sz = x.shape[2:]
x = x + self.pos_embed[:, :, :sz[0], :sz[1]]
return x
class POPatchEmbed(nn.Module):
"""Image to Patch Embedding."""
def __init__(self,
in_channels=3,
feat_max_size=[8, 32],
embed_dim=768,
use_pos_embed=False,
flatten=False,
bias=False):
super().__init__()
self.patch_embed = nn.Sequential(
ConvBNLayer(
in_channels=in_channels,
out_channels=embed_dim // 2,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=bias,
),
ConvBNLayer(
in_channels=embed_dim // 2,
out_channels=embed_dim,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=bias,
),
)
if use_pos_embed:
self.patch_embed.append(ADDPosEmbed(feat_max_size, embed_dim))
if flatten:
self.patch_embed.append(FlattenTranspose())
def forward(self, x):
sz = x.shape[2:]
x = self.patch_embed(x)
return x, [sz[0] // 4, sz[1] // 4]
class LastStage(nn.Module):
def __init__(self, in_channels, out_channels, last_drop, out_char_num=0):
super().__init__()
self.last_conv = nn.Linear(in_channels, out_channels, bias=False)
self.hardswish = nn.Hardswish()
self.dropout = nn.Dropout(p=last_drop)
def forward(self, x, sz):
x = x.reshape(-1, sz[0], sz[1], x.shape[-1])
x = x.mean(1)
x = self.last_conv(x)
x = self.hardswish(x)
x = self.dropout(x)
return x, [1, sz[1]]
class Feat2D(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, sz):
C = x.shape[-1]
x = x.transpose(1, 2).reshape(-1, C, sz[0], sz[1])
return x, sz
class SVTRv2LNConvTwo33(nn.Module):
def __init__(self,
max_sz=[32, 128],
in_channels=3,
out_channels=192,
depths=[3, 6, 3],
dims=[64, 128, 256],
mixer=[['Conv'] * 3, ['Conv'] * 3 + ['Global'] * 3,
['Global'] * 3],
use_pos_embed=True,
sub_k=[[1, 1], [2, 1], [1, 1]],
num_heads=[2, 4, 8],
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
last_drop=0.1,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
act=nn.GELU,
last_stage=False,
feat2d=False,
eps=1e-6,
num_convs=[[2] * 3, [2] * 3 + [3] * 3, [3] * 3],
kernel_sizes=[[3] * 3, [3] * 3 + [3] * 3, [3] * 3],
pope_bias=False,
**kwargs):
super().__init__()
num_stages = len(depths)
self.num_features = dims[-1]
feat_max_size = [max_sz[0] // 4, max_sz[1] // 4]
self.pope = POPatchEmbed(in_channels=in_channels,
feat_max_size=feat_max_size,
embed_dim=dims[0],
use_pos_embed=use_pos_embed,
flatten=mixer[0][0] != 'Conv',
bias=pope_bias)
dpr = np.linspace(0, drop_path_rate,
sum(depths)) # stochastic depth decay rule
self.stages = nn.ModuleList()
for i_stage in range(num_stages):
stage = SVTRStage(
dim=dims[i_stage],
out_dim=dims[i_stage + 1] if i_stage < num_stages - 1 else 0,
depth=depths[i_stage],
mixer=mixer[i_stage],
kernel_sizes=kernel_sizes[i_stage]
if len(kernel_sizes[i_stage]) == len(mixer[i_stage]) else [3] *
len(mixer[i_stage]),
sub_k=sub_k[i_stage],
num_heads=num_heads[i_stage],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],
norm_layer=norm_layer,
act=act,
downsample=False if i_stage == num_stages - 1 else True,
eps=eps,
num_conv=num_convs[i_stage] if len(num_convs[i_stage]) == len(
mixer[i_stage]) else [2] * len(mixer[i_stage]),
)
self.stages.append(stage)
self.out_channels = self.num_features
self.last_stage = last_stage
if last_stage:
self.out_channels = out_channels
self.stages.append(
LastStage(self.num_features, out_channels, last_drop))
if feat2d:
self.stages.append(Feat2D())
self.apply(self._init_weights)
def _init_weights(self, m: nn.Module):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, mean=0, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
if isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
if isinstance(m, nn.Conv2d):
kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
@torch.jit.ignore
def no_weight_decay(self):
return {'patch_embed', 'downsample', 'pos_embed'}
def forward(self, x):
if len(x.shape) == 5:
x = x.flatten(0, 1)
x, sz = self.pope(x)
for stage in self.stages:
x, sz = stage(x, sz)
return x