Spaces:
Running
Running
import torch.nn as nn | |
def conv3x3(in_planes, out_planes, stride=1): | |
"""3x3 convolution with padding.""" | |
return nn.Conv2d(in_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias=False) | |
def conv1x1(in_planes, out_planes, stride=1): | |
"""1x1 convolution.""" | |
return nn.Conv2d(in_planes, | |
out_planes, | |
kernel_size=1, | |
stride=stride, | |
bias=False) | |
class AsterBlock(nn.Module): | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(AsterBlock, self).__init__() | |
self.conv1 = conv1x1(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet_ASTER(nn.Module): | |
"""For aster or crnn.""" | |
def __init__(self, in_channels, with_lstm=True, n_group=1): | |
super(ResNet_ASTER, self).__init__() | |
self.with_lstm = with_lstm | |
self.n_group = n_group | |
self.out_channels = 512 | |
if with_lstm: | |
self.out_channels = 512 | |
self.layer0 = nn.Sequential( | |
nn.Conv2d(in_channels, | |
32, | |
kernel_size=(3, 3), | |
stride=1, | |
padding=1, | |
bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True)) | |
self.inplanes = 32 | |
self.layer1 = self._make_layer(32, 3, [2, 2]) # [16, 50] | |
self.layer2 = self._make_layer(64, 4, [2, 2]) # [8, 25] | |
self.layer3 = self._make_layer(128, 6, [2, 1]) # [4, 25] | |
self.layer4 = self._make_layer(256, 6, [2, 1]) # [2, 25] | |
self.layer5 = self._make_layer(512, 3, [2, 1]) # [1, 25] | |
if with_lstm: | |
self.rnn = nn.LSTM(512, | |
256, | |
bidirectional=True, | |
num_layers=2, | |
batch_first=True) | |
self.out_planes = 2 * 256 | |
else: | |
self.out_planes = 512 | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, | |
mode='fan_out', | |
nonlinearity='relu') | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def _make_layer(self, planes, blocks, stride): | |
downsample = None | |
if stride != [1, 1] or self.inplanes != planes: | |
downsample = nn.Sequential(conv1x1(self.inplanes, planes, stride), | |
nn.BatchNorm2d(planes)) | |
layers = [] | |
layers.append(AsterBlock(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes | |
for _ in range(1, blocks): | |
layers.append(AsterBlock(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x0 = self.layer0(x) | |
x1 = self.layer1(x0) | |
x2 = self.layer2(x1) | |
x3 = self.layer3(x2) | |
x4 = self.layer4(x3) | |
x5 = self.layer5(x4) | |
cnn_feat = x5.squeeze(2) # [N, c, w] | |
cnn_feat = cnn_feat.transpose(2, 1).contiguous() | |
if self.with_lstm: | |
rnn_feat, _ = self.rnn(cnn_feat) | |
return rnn_feat | |
else: | |
return cnn_feat | |