Spaces:
Running
Running
import torch.nn.functional as F | |
from torch import nn | |
import torch | |
class CosineEmbeddingLoss(nn.Module): | |
def __init__(self, margin=0.0): | |
super(CosineEmbeddingLoss, self).__init__() | |
self.margin = margin | |
self.epsilon = 1e-12 | |
def forward(self, x1, x2): | |
similarity = torch.sum(x1 * x2, axis=-1) / ( | |
torch.norm(x1, dim=-1) * torch.norm(x2, dim=-1) + self.epsilon) | |
return (1 - similarity).mean() | |
class SEEDLoss(nn.Module): | |
def __init__(self, label_smoothing=0.1, ignore_index=0, **kwargs): | |
super(SEEDLoss, self).__init__() | |
self.label_smoothing = label_smoothing | |
self.loss_sem = CosineEmbeddingLoss() | |
def forward(self, preds, batch): | |
embedding_vectors, pred = preds | |
max_len = batch[2].max() | |
tgt = batch[1][:, 1:2 + max_len] | |
pred = pred.flatten(0, 1) | |
tgt = tgt.reshape([-1]) | |
loss = F.cross_entropy( | |
pred, | |
tgt, | |
reduction='mean', | |
label_smoothing=self.label_smoothing, | |
ignore_index=pred.shape[1] + 1, | |
) # self.loss_func(pred, tgt) | |
sem_target = batch[3].float() | |
sem_loss = torch.sum(self.loss_sem(embedding_vectors, sem_target)) | |
return { | |
'loss': loss + 0.1 * sem_loss, | |
'rec_loss': loss, | |
'sem_loss': sem_loss | |
} | |