topdu's picture
openocr demo
29f689c
raw
history blame
15 kB
import numpy as np
import torch
import torch.nn as nn
from torch.nn.init import kaiming_normal_, ones_, trunc_normal_, zeros_
from openrec.modeling.common import DropPath, Identity, Mlp
class ConvBNLayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=0,
bias=False,
groups=1,
act=nn.GELU,
):
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=bias,
)
self.norm = nn.BatchNorm2d(out_channels)
self.act = act()
def forward(self, inputs):
out = self.conv(inputs)
out = self.norm(out)
out = self.act(out)
return out
class ConvMixer(nn.Module):
def __init__(
self,
dim,
num_heads=8,
local_k=[5, 5],
):
super().__init__()
self.local_mixer = nn.Conv2d(dim, dim, 5, 1, 2, groups=num_heads)
def forward(self, x, mask=None):
x = self.local_mixer(x)
return x
class ConvMlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
groups=1,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, groups=groups)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
self.dim = dim
self.head_dim = dim // num_heads
self.scale = qk_scale or self.head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, mask=None):
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = q @ k.transpose(-2, -1) * self.scale
if mask is not None:
attn += mask.unsqueeze(0)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, self.dim)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mixer='Global',
local_k=[7, 11],
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
eps=1e-6,
):
super().__init__()
mlp_hidden_dim = int(dim * mlp_ratio)
if mixer == 'Global' or mixer == 'Local':
self.norm1 = norm_layer(dim, eps=eps)
self.mixer = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.norm2 = norm_layer(dim, eps=eps)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
elif mixer == 'Conv':
self.norm1 = nn.BatchNorm2d(dim)
self.mixer = ConvMixer(dim, num_heads=num_heads, local_k=local_k)
self.norm2 = nn.BatchNorm2d(dim)
self.mlp = ConvMlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
else:
raise TypeError('The mixer must be one of [Global, Local, Conv]')
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
def forward(self, x, mask=None):
x = self.norm1(x + self.drop_path(self.mixer(x, mask=mask)))
x = self.norm2(x + self.drop_path(self.mlp(x)))
return x
class FlattenTranspose(nn.Module):
def forward(self, x, mask=None):
return x.flatten(2).transpose(1, 2)
class SVTRStage(nn.Module):
def __init__(self,
feat_maxSize=[16, 128],
dim=64,
out_dim=256,
depth=3,
mixer=['Local'] * 3,
local_k=[7, 11],
sub_k=[2, 1],
num_heads=2,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path=[0.1] * 3,
norm_layer=nn.LayerNorm,
act=nn.GELU,
eps=1e-6,
downsample=None,
**kwargs):
super().__init__()
self.dim = dim
conv_block_num = sum([1 if mix == 'Conv' else 0 for mix in mixer])
if conv_block_num == depth:
self.mask = None
conv_block_num = 0
if downsample:
self.sub_norm = nn.BatchNorm2d(out_dim, eps=eps)
else:
if 'Local' in mixer:
mask = self.get_max2d_mask(feat_maxSize[0], feat_maxSize[1],
local_k)
self.register_buffer('mask', mask)
else:
self.mask = None
if downsample:
self.sub_norm = norm_layer(out_dim, eps=eps)
self.blocks = nn.ModuleList()
for i in range(depth):
self.blocks.append(
Block(
dim=dim,
num_heads=num_heads,
mixer=mixer[i],
local_k=local_k,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=act,
attn_drop=attn_drop_rate,
drop_path=drop_path[i],
norm_layer=norm_layer,
eps=eps,
))
if i == conv_block_num - 1:
self.blocks.append(FlattenTranspose())
if downsample:
self.downsample = nn.Conv2d(dim,
out_dim,
kernel_size=3,
stride=sub_k,
padding=1)
else:
self.downsample = None
def get_max2d_mask(self, H, W, local_k):
hk, wk = local_k
mask = torch.ones(H * W,
H + hk - 1,
W + wk - 1,
dtype=torch.float32,
requires_grad=False)
for h in range(0, H):
for w in range(0, W):
mask[h * W + w, h:h + hk, w:w + wk] = 0.0
mask = mask[:, hk // 2:H + hk // 2, wk // 2:W + wk // 2] # .flatten(1)
mask[mask >= 1] = -np.inf
return mask.reshape(H, W, H, W)
def get_2d_mask(self, H1, W1):
if H1 == self.mask.shape[0] and W1 == self.mask.shape[1]:
return self.mask.flatten(0, 1).flatten(1, 2).unsqueeze(0)
h_slice = H1 // 2
offet_h = H1 - 2 * h_slice
w_slice = W1 // 2
offet_w = W1 - 2 * w_slice
mask1 = self.mask[:h_slice + offet_h, :w_slice, :H1, :W1]
mask2 = self.mask[:h_slice + offet_h, -w_slice:, :H1, -W1:]
mask3 = self.mask[-h_slice:, :(w_slice + offet_w), -H1:, :W1]
mask4 = self.mask[-h_slice:, -(w_slice + offet_w):, -H1:, -W1:]
mask_top = torch.concat([mask1, mask2], 1)
mask_bott = torch.concat([mask3, mask4], 1)
mask = torch.concat([mask_top.flatten(2), mask_bott.flatten(2)], 0)
return mask.flatten(0, 1).unsqueeze(0)
def forward(self, x, sz=None):
if self.mask is not None:
mask = self.get_2d_mask(sz[0], sz[1])
else:
mask = self.mask
for blk in self.blocks:
x = blk(x, mask=mask)
if self.downsample is not None:
if x.dim() == 3:
x = x.transpose(1, 2).reshape(-1, self.dim, sz[0], sz[1])
x = self.downsample(x)
sz = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
else:
x = self.downsample(x)
sz = x.shape[2:]
x = self.sub_norm(x)
return x, sz
class POPatchEmbed(nn.Module):
"""Image to Patch Embedding."""
def __init__(self,
in_channels=3,
feat_max_size=[8, 32],
embed_dim=768,
use_pos_embed=False,
flatten=False):
super().__init__()
self.patch_embed = nn.Sequential(
ConvBNLayer(
in_channels=in_channels,
out_channels=embed_dim // 2,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
ConvBNLayer(
in_channels=embed_dim // 2,
out_channels=embed_dim,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
)
self.use_pos_embed = use_pos_embed
self.flatten = flatten
if use_pos_embed:
pos_embed = torch.zeros(
[1, feat_max_size[0] * feat_max_size[1], embed_dim],
dtype=torch.float32)
trunc_normal_(pos_embed, mean=0, std=0.02)
self.pos_embed = nn.Parameter(
pos_embed.transpose(1,
2).reshape(1, embed_dim, feat_max_size[0],
feat_max_size[1]),
requires_grad=True,
)
def forward(self, x):
x = self.patch_embed(x)
sz = x.shape[2:]
if self.use_pos_embed:
x = x + self.pos_embed[:, :, :sz[0], :sz[1]]
if self.flatten:
x = x.flatten(2).transpose(1, 2)
return x, sz
class SVTRv2(nn.Module):
def __init__(self,
max_sz=[32, 128],
in_channels=3,
out_channels=192,
depths=[3, 6, 3],
dims=[64, 128, 256],
mixer=[['Local'] * 3, ['Local'] * 3 + ['Global'] * 3,
['Global'] * 3],
use_pos_embed=True,
local_k=[[7, 11], [7, 11], [-1, -1]],
sub_k=[[1, 1], [2, 1], [1, 1]],
num_heads=[2, 4, 8],
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
last_drop=0.1,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
act=nn.GELU,
last_stage=False,
eps=1e-6,
**kwargs):
super().__init__()
num_stages = len(depths)
self.num_features = dims[-1]
feat_max_size = [max_sz[0] // 4, max_sz[1] // 4]
self.pope = POPatchEmbed(in_channels=in_channels,
feat_max_size=feat_max_size,
embed_dim=dims[0],
use_pos_embed=use_pos_embed,
flatten=mixer[0][0] != 'Conv')
dpr = np.linspace(0, drop_path_rate,
sum(depths)) # stochastic depth decay rule
self.stages = nn.ModuleList()
for i_stage in range(num_stages):
stage = SVTRStage(
feat_maxSize=feat_max_size,
dim=dims[i_stage],
out_dim=dims[i_stage + 1] if i_stage < num_stages - 1 else 0,
depth=depths[i_stage],
mixer=mixer[i_stage],
local_k=local_k[i_stage],
sub_k=sub_k[i_stage],
num_heads=num_heads[i_stage],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],
norm_layer=norm_layer,
act=act,
downsample=False if i_stage == num_stages - 1 else True,
eps=eps,
)
self.stages.append(stage)
feat_max_size = [
feat_max_size[0] // sub_k[i_stage][0],
feat_max_size[1] // sub_k[i_stage][1]
]
self.out_channels = self.num_features
self.last_stage = last_stage
if last_stage:
self.out_channels = out_channels
self.last_conv = nn.Linear(self.num_features,
self.out_channels,
bias=False)
self.hardswish = nn.Hardswish()
self.dropout = nn.Dropout(p=last_drop)
self.apply(self._init_weights)
def _init_weights(self, m: nn.Module):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, mean=0, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
if isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
if isinstance(m, nn.Conv2d):
kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
@torch.jit.ignore
def no_weight_decay(self):
return {'patch_embed', 'downsample', 'pos_embed'}
def forward(self, x):
x, sz = self.pope(x)
for stage in self.stages:
x, sz = stage(x, sz)
if self.last_stage:
x = x.reshape(-1, sz[0], sz[1], self.num_features)
x = x.mean(1)
x = self.last_conv(x)
x = self.hardswish(x)
x = self.dropout(x)
return x