Spaces:
Running
Running
import torch.nn as nn | |
__all__ = ['ResNet31'] | |
def conv3x3(in_channel, out_channel, stride=1): | |
return nn.Conv2d(in_channel, | |
out_channel, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, in_channels, channels, stride=1, downsample=False): | |
super().__init__() | |
self.conv1 = conv3x3(in_channels, channels, stride) | |
self.bn1 = nn.BatchNorm2d(channels) | |
self.relu = nn.ReLU() | |
self.conv2 = conv3x3(channels, channels) | |
self.bn2 = nn.BatchNorm2d(channels) | |
self.downsample = downsample | |
if downsample: | |
self.downsample = nn.Sequential( | |
nn.Conv2d(in_channels, | |
channels * self.expansion, | |
1, | |
stride, | |
bias=False), | |
nn.BatchNorm2d(channels * self.expansion), | |
) | |
else: | |
self.downsample = nn.Sequential() | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet31(nn.Module): | |
""" | |
Args: | |
in_channels (int): Number of channels of input image tensor. | |
layers (list[int]): List of BasicBlock number for each stage. | |
channels (list[int]): List of out_channels of Conv2d layer. | |
out_indices (None | Sequence[int]): Indices of output stages. | |
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage. | |
""" | |
def __init__( | |
self, | |
in_channels=3, | |
layers=[1, 2, 5, 3], | |
channels=[64, 128, 256, 256, 512, 512, 512], | |
out_indices=None, | |
last_stage_pool=False, | |
): | |
super(ResNet31, self).__init__() | |
assert isinstance(in_channels, int) | |
assert isinstance(last_stage_pool, bool) | |
self.out_indices = out_indices | |
self.last_stage_pool = last_stage_pool | |
# conv 1 (Conv Conv) | |
self.conv1_1 = nn.Conv2d(in_channels, | |
channels[0], | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
self.bn1_1 = nn.BatchNorm2d(channels[0]) | |
self.relu1_1 = nn.ReLU(inplace=True) | |
self.conv1_2 = nn.Conv2d(channels[0], | |
channels[1], | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
self.bn1_2 = nn.BatchNorm2d(channels[1]) | |
self.relu1_2 = nn.ReLU(inplace=True) | |
# conv 2 (Max-pooling, Residual block, Conv) | |
self.pool2 = nn.MaxPool2d(kernel_size=2, | |
stride=2, | |
padding=0, | |
ceil_mode=True) | |
self.block2 = self._make_layer(channels[1], channels[2], layers[0]) | |
self.conv2 = nn.Conv2d(channels[2], | |
channels[2], | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
self.bn2 = nn.BatchNorm2d(channels[2]) | |
self.relu2 = nn.ReLU(inplace=True) | |
# conv 3 (Max-pooling, Residual block, Conv) | |
self.pool3 = nn.MaxPool2d(kernel_size=2, | |
stride=2, | |
padding=0, | |
ceil_mode=True) | |
self.block3 = self._make_layer(channels[2], channels[3], layers[1]) | |
self.conv3 = nn.Conv2d(channels[3], | |
channels[3], | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
self.bn3 = nn.BatchNorm2d(channels[3]) | |
self.relu3 = nn.ReLU(inplace=True) | |
# conv 4 (Max-pooling, Residual block, Conv) | |
self.pool4 = nn.MaxPool2d(kernel_size=(2, 1), | |
stride=(2, 1), | |
padding=0, | |
ceil_mode=True) | |
self.block4 = self._make_layer(channels[3], channels[4], layers[2]) | |
self.conv4 = nn.Conv2d(channels[4], | |
channels[4], | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
self.bn4 = nn.BatchNorm2d(channels[4]) | |
self.relu4 = nn.ReLU(inplace=True) | |
# conv 5 ((Max-pooling), Residual block, Conv) | |
self.pool5 = None | |
if self.last_stage_pool: | |
self.pool5 = nn.MaxPool2d(kernel_size=2, | |
stride=2, | |
padding=0, | |
ceil_mode=True) | |
self.block5 = self._make_layer(channels[4], channels[5], layers[3]) | |
self.conv5 = nn.Conv2d(channels[5], | |
channels[5], | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
self.bn5 = nn.BatchNorm2d(channels[5]) | |
self.relu5 = nn.ReLU(inplace=True) | |
self.out_channels = channels[-1] | |
def _make_layer(self, input_channels, output_channels, blocks): | |
layers = [] | |
for _ in range(blocks): | |
downsample = None | |
if input_channels != output_channels: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
input_channels, | |
output_channels, | |
kernel_size=1, | |
stride=1, | |
bias=False, | |
), | |
nn.BatchNorm2d(output_channels), | |
) | |
layers.append( | |
BasicBlock(input_channels, | |
output_channels, | |
downsample=downsample)) | |
input_channels = output_channels | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1_1(x) | |
x = self.bn1_1(x) | |
x = self.relu1_1(x) | |
x = self.conv1_2(x) | |
x = self.bn1_2(x) | |
x = self.relu1_2(x) | |
outs = [] | |
for i in range(4): | |
layer_index = i + 2 | |
pool_layer = getattr(self, 'pool{}'.format(layer_index)) | |
block_layer = getattr(self, 'block{}'.format(layer_index)) | |
conv_layer = getattr(self, 'conv{}'.format(layer_index)) | |
bn_layer = getattr(self, 'bn{}'.format(layer_index)) | |
relu_layer = getattr(self, 'relu{}'.format(layer_index)) | |
if pool_layer is not None: | |
x = pool_layer(x) | |
x = block_layer(x) | |
x = conv_layer(x) | |
x = bn_layer(x) | |
x = relu_layer(x) | |
outs.append(x) | |
if self.out_indices is not None: | |
return tuple([outs[i] for i in self.out_indices]) | |
return x | |