topdu's picture
openocr demo
29f689c
raw
history blame
22.2 kB
# --------------------------------------------------------
# FocalNets -- Focal Modulation Networks
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Jianwei Yang (jianwyan@microsoft.com)
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from torch.nn.init import trunc_normal_
from openrec.modeling.common import DropPath, Mlp
from openrec.modeling.encoders.svtrnet import ConvBNLayer
class FocalModulation(nn.Module):
def __init__(self,
dim,
focal_window,
focal_level,
max_kh=None,
focal_factor=2,
bias=True,
proj_drop=0.0,
use_postln_in_modulation=False,
normalize_modulator=False):
super().__init__()
self.dim = dim
self.focal_window = focal_window
self.focal_level = focal_level
self.focal_factor = focal_factor
self.use_postln_in_modulation = use_postln_in_modulation
self.normalize_modulator = normalize_modulator
self.f = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=bias)
self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)
self.act = nn.GELU()
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.focal_layers = nn.ModuleList()
self.kernel_sizes = []
for k in range(self.focal_level):
kernel_size = self.focal_factor * k + self.focal_window
if max_kh is not None:
k_h, k_w = [min(kernel_size, max_kh), kernel_size]
kernel_size = [k_h, k_w]
padding = [k_h // 2, k_w // 2]
else:
padding = kernel_size // 2
self.focal_layers.append(
nn.Sequential(
nn.Conv2d(dim,
dim,
kernel_size=kernel_size,
stride=1,
groups=dim,
padding=padding,
bias=False),
nn.GELU(),
))
self.kernel_sizes.append(kernel_size)
if self.use_postln_in_modulation:
self.ln = nn.LayerNorm(dim)
def forward(self, x):
"""
Args:
x: input features with shape of (B, H, W, C)
"""
C = x.shape[-1]
# pre linear projection
x = self.f(x).permute(0, 3, 1, 2).contiguous()
q, ctx, self.gates = torch.split(x, (C, C, self.focal_level + 1), 1)
# context aggreation
ctx_all = 0
for l in range(self.focal_level):
ctx = self.focal_layers[l](ctx)
ctx_all = ctx_all + ctx * self.gates[:, l:l + 1]
ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
ctx_all = ctx_all + ctx_global * self.gates[:, self.focal_level:]
# normalize context
if self.normalize_modulator:
ctx_all = ctx_all / (self.focal_level + 1)
# focal modulation
self.modulator = self.h(ctx_all)
x_out = q * self.modulator
x_out = x_out.permute(0, 2, 3, 1).contiguous()
if self.use_postln_in_modulation:
x_out = self.ln(x_out)
# post linear porjection
x_out = self.proj(x_out)
x_out = self.proj_drop(x_out)
return x_out
def extra_repr(self) -> str:
return f'dim={self.dim}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
flops += N * self.dim * (self.dim * 2 + (self.focal_level + 1))
# focal convolution
for k in range(self.focal_level):
flops += N * (self.kernel_sizes[k]**2 + 1) * self.dim
# global gating
flops += N * 1 * self.dim
# self.linear
flops += N * self.dim * (self.dim + 1)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
class FocalNetBlock(nn.Module):
r"""Focal Modulation Network Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
drop (float, optional): Dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
focal_level (int): Number of focal levels.
focal_window (int): Focal window size at first focal level
use_layerscale (bool): Whether use layerscale
layerscale_value (float): Initial layerscale value
use_postln (bool): Whether use layernorm after modulation
"""
def __init__(
self,
dim,
input_resolution=None,
mlp_ratio=4.0,
drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
focal_level=1,
focal_window=3,
max_kh=None,
use_layerscale=False,
layerscale_value=1e-4,
use_postln=False,
use_postln_in_modulation=False,
normalize_modulator=False,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.mlp_ratio = mlp_ratio
self.focal_window = focal_window
self.focal_level = focal_level
self.use_postln = use_postln
self.norm1 = norm_layer(dim)
self.modulation = FocalModulation(
dim,
proj_drop=drop,
focal_window=focal_window,
focal_level=self.focal_level,
max_kh=max_kh,
use_postln_in_modulation=use_postln_in_modulation,
normalize_modulator=normalize_modulator,
)
self.drop_path = DropPath(
drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.gamma_1 = 1.0
self.gamma_2 = 1.0
if use_layerscale:
self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)),
requires_grad=True)
self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)),
requires_grad=True)
self.H = None
self.W = None
def forward(self, x):
H, W = self.H, self.W
B, L, C = x.shape
shortcut = x
# Focal Modulation
x = x if self.use_postln else self.norm1(x)
x = x.view(B, H, W, C)
x = self.modulation(x).view(B, H * W, C)
x = x if not self.use_postln else self.norm1(x)
# FFN
x = shortcut + self.drop_path(self.gamma_1 * x)
x = x + self.drop_path(self.gamma_2 * (self.norm2(
self.mlp(x)) if self.use_postln else self.mlp(self.norm2(x))))
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, input_resolution={self.input_resolution}, ' f'mlp_ratio={self.mlp_ratio}'
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# W-MSA/SW-MSA
flops += self.modulation.flops(H * W)
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
# norm2
flops += self.dim * H * W
return flops
class BasicLayer(nn.Module):
"""A basic Focal Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
focal_level (int): Number of focal levels
focal_window (int): Focal window size at first focal level
use_layerscale (bool): Whether use layerscale
layerscale_value (float): Initial layerscale value
use_postln (bool): Whether use layernorm after modulation
"""
def __init__(
self,
dim,
out_dim,
input_resolution,
depth,
mlp_ratio=4.0,
drop=0.0,
drop_path=0.0,
norm_layer=nn.LayerNorm,
downsample=None,
downsample_kernel=[],
use_checkpoint=False,
focal_level=1,
focal_window=1,
use_conv_embed=False,
use_layerscale=False,
layerscale_value=1e-4,
use_postln=False,
use_postln_in_modulation=False,
normalize_modulator=False,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
FocalNetBlock(
dim=dim,
input_resolution=input_resolution,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i]
if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
focal_level=focal_level,
focal_window=focal_window,
use_layerscale=use_layerscale,
layerscale_value=layerscale_value,
use_postln=use_postln,
use_postln_in_modulation=use_postln_in_modulation,
normalize_modulator=normalize_modulator,
) for i in range(depth)
])
if downsample is not None:
self.downsample = downsample(
img_size=input_resolution,
patch_size=downsample_kernel,
in_chans=dim,
embed_dim=out_dim,
use_conv_embed=use_conv_embed,
norm_layer=norm_layer,
is_stem=False,
)
else:
self.downsample = None
def forward(self, x, H, W):
for blk in self.blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)
x, Ho, Wo = self.downsample(x)
else:
Ho, Wo = H, W
return x, Ho, Wo
def extra_repr(self) -> str:
return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}'
def flops(self):
flops = 0
for blk in self.blocks:
flops += blk.flops()
if self.downsample is not None:
flops += self.downsample.flops()
return flops
class PatchEmbed(nn.Module):
r"""Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self,
img_size=(224, 224),
patch_size=[4, 4],
in_chans=3,
embed_dim=96,
use_conv_embed=False,
norm_layer=None,
is_stem=False):
super().__init__()
# patch_size = to_2tuple(patch_size)
patches_resolution = [
img_size[0] // patch_size[0], img_size[1] // patch_size[1]
]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
if use_conv_embed:
# if we choose to use conv embedding, then we treat the stem and non-stem differently
if is_stem:
kernel_size = 7
padding = 2
stride = 4
else:
kernel_size = 3
padding = 1
stride = 2
self.proj = nn.Conv2d(in_chans,
embed_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding)
else:
self.proj = nn.Conv2d(in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x)
H, W = x.shape[2:]
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
if self.norm is not None:
x = self.norm(x)
return x, H, W
def flops(self):
Ho, Wo = self.patches_resolution
flops = Ho * Wo * self.embed_dim * self.in_chans * (
self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
class FocalSVTR(nn.Module):
r"""Focal Modulation Networks (FocalNets)
Args:
img_size (int | tuple(int)): Input image size. Default [32, 128]
patch_size (int | tuple(int)): Patch size. Default: [4, 4]
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Focal Transformer layer.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
drop_rate (float): Dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1]
focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1]
use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance,
but we do not use it by default. Default: False
use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False
layerscale_value (float): Value for layer scale. Default: 1e-4
use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models)
"""
def __init__(
self,
img_size=[32, 128],
patch_size=[4, 4],
out_channels=256,
out_char_num=25,
in_channels=3,
embed_dim=96,
depths=[3, 6, 3],
sub_k=[[2, 1], [2, 1], [1, 1]],
last_stage=False,
mlp_ratio=4.0,
drop_rate=0.0,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
patch_norm=True,
use_checkpoint=False,
focal_levels=[6, 6, 6],
focal_windows=[3, 3, 3],
use_conv_embed=False,
use_layerscale=False,
layerscale_value=1e-4,
use_postln=False,
use_postln_in_modulation=False,
normalize_modulator=False,
feat2d=False,
**kwargs,
):
super().__init__()
self.num_layers = len(depths)
embed_dim = [embed_dim * (2**i) for i in range(self.num_layers)]
self.feat2d = feat2d
self.embed_dim = embed_dim
self.patch_norm = patch_norm
self.num_features = embed_dim[-1]
self.mlp_ratio = mlp_ratio
self.patch_embed = nn.Sequential(
ConvBNLayer(
in_channels=in_channels,
out_channels=embed_dim[0] // 2,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
ConvBNLayer(
in_channels=embed_dim[0] // 2,
out_channels=embed_dim[0],
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
)
patches_resolution = [
img_size[0] // patch_size[0], img_size[1] // patch_size[1]
]
self.patches_resolution = patches_resolution
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=embed_dim[i_layer],
out_dim=embed_dim[i_layer + 1] if
(i_layer < self.num_layers - 1) else None,
input_resolution=patches_resolution,
depth=depths[i_layer],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchEmbed if
(i_layer < self.num_layers - 1) else None,
downsample_kernel=sub_k[i_layer],
focal_level=focal_levels[i_layer],
focal_window=focal_windows[i_layer],
use_conv_embed=use_conv_embed,
use_checkpoint=use_checkpoint,
use_layerscale=use_layerscale,
layerscale_value=layerscale_value,
use_postln=use_postln,
use_postln_in_modulation=use_postln_in_modulation,
normalize_modulator=normalize_modulator,
)
patches_resolution = [
patches_resolution[0] // sub_k[i_layer][0],
patches_resolution[1] // sub_k[i_layer][1]
]
self.layers.append(layer)
self.out_channels = self.num_features
self.last_stage = last_stage
if last_stage:
self.out_channels = out_channels
self.last_conv = nn.Linear(self.num_features,
self.out_channels,
bias=False)
self.hardswish = nn.Hardswish()
self.dropout = nn.Dropout(p=0.1)
# self.avg_pool = nn.AdaptiveAvgPool2d([1, out_char_num])
# self.last_conv = nn.Conv2d(
# in_channels=self.num_features,
# out_channels=self.out_channels,
# kernel_size=1,
# stride=1,
# padding=0,
# bias=False,
# )
# self.hardswish = nn.Hardswish()
# self.dropout = nn.Dropout(p=0.1)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight,
mode='fan_out',
nonlinearity='relu')
@torch.jit.ignore
def no_weight_decay(self):
return {'patch_embed', 'downsample'}
def forward(self, x):
if len(x.shape) == 5:
x = x.flatten(0, 1)
x = self.patch_embed(x)
H, W = x.shape[2:]
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
x = self.pos_drop(x)
for layer in self.layers:
x, H, W = layer(x, H, W)
if self.feat2d:
x = x.transpose(1, 2).reshape(-1, self.num_features, H, W)
if self.last_stage:
x = x.reshape(-1, H, W, self.num_features).mean(1)
x = self.last_conv(x)
x = self.hardswish(x)
x = self.dropout(x)
# x = self.avg_pool(x.transpose(1, 2).reshape(-1, self.num_features, H, W))
# x = self.last_conv(x)
# x = self.hardswish(x)
# x = self.dropout(x)
# x = x.flatten(2).transpose(1, 2)
return x
def flops(self):
flops = 0
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
flops += layer.flops()
flops += self.num_features * self.patches_resolution[
0] * self.patches_resolution[1] // (2**self.num_layers)
return flops