Spaces:
Running
Running
# -------------------------------------------------------- | |
# FocalNets -- Focal Modulation Networks | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Jianwei Yang (jianwyan@microsoft.com) | |
# -------------------------------------------------------- | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint as checkpoint | |
from torch.nn.init import trunc_normal_ | |
from openrec.modeling.common import DropPath, Mlp | |
from openrec.modeling.encoders.svtrnet import ConvBNLayer | |
class FocalModulation(nn.Module): | |
def __init__(self, | |
dim, | |
focal_window, | |
focal_level, | |
max_kh=None, | |
focal_factor=2, | |
bias=True, | |
proj_drop=0.0, | |
use_postln_in_modulation=False, | |
normalize_modulator=False): | |
super().__init__() | |
self.dim = dim | |
self.focal_window = focal_window | |
self.focal_level = focal_level | |
self.focal_factor = focal_factor | |
self.use_postln_in_modulation = use_postln_in_modulation | |
self.normalize_modulator = normalize_modulator | |
self.f = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=bias) | |
self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias) | |
self.act = nn.GELU() | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.focal_layers = nn.ModuleList() | |
self.kernel_sizes = [] | |
for k in range(self.focal_level): | |
kernel_size = self.focal_factor * k + self.focal_window | |
if max_kh is not None: | |
k_h, k_w = [min(kernel_size, max_kh), kernel_size] | |
kernel_size = [k_h, k_w] | |
padding = [k_h // 2, k_w // 2] | |
else: | |
padding = kernel_size // 2 | |
self.focal_layers.append( | |
nn.Sequential( | |
nn.Conv2d(dim, | |
dim, | |
kernel_size=kernel_size, | |
stride=1, | |
groups=dim, | |
padding=padding, | |
bias=False), | |
nn.GELU(), | |
)) | |
self.kernel_sizes.append(kernel_size) | |
if self.use_postln_in_modulation: | |
self.ln = nn.LayerNorm(dim) | |
def forward(self, x): | |
""" | |
Args: | |
x: input features with shape of (B, H, W, C) | |
""" | |
C = x.shape[-1] | |
# pre linear projection | |
x = self.f(x).permute(0, 3, 1, 2).contiguous() | |
q, ctx, self.gates = torch.split(x, (C, C, self.focal_level + 1), 1) | |
# context aggreation | |
ctx_all = 0 | |
for l in range(self.focal_level): | |
ctx = self.focal_layers[l](ctx) | |
ctx_all = ctx_all + ctx * self.gates[:, l:l + 1] | |
ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True)) | |
ctx_all = ctx_all + ctx_global * self.gates[:, self.focal_level:] | |
# normalize context | |
if self.normalize_modulator: | |
ctx_all = ctx_all / (self.focal_level + 1) | |
# focal modulation | |
self.modulator = self.h(ctx_all) | |
x_out = q * self.modulator | |
x_out = x_out.permute(0, 2, 3, 1).contiguous() | |
if self.use_postln_in_modulation: | |
x_out = self.ln(x_out) | |
# post linear porjection | |
x_out = self.proj(x_out) | |
x_out = self.proj_drop(x_out) | |
return x_out | |
def extra_repr(self) -> str: | |
return f'dim={self.dim}' | |
def flops(self, N): | |
# calculate flops for 1 window with token length of N | |
flops = 0 | |
flops += N * self.dim * (self.dim * 2 + (self.focal_level + 1)) | |
# focal convolution | |
for k in range(self.focal_level): | |
flops += N * (self.kernel_sizes[k]**2 + 1) * self.dim | |
# global gating | |
flops += N * 1 * self.dim | |
# self.linear | |
flops += N * self.dim * (self.dim + 1) | |
# x = self.proj(x) | |
flops += N * self.dim * self.dim | |
return flops | |
class FocalNetBlock(nn.Module): | |
r"""Focal Modulation Network Block. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resulotion. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
focal_level (int): Number of focal levels. | |
focal_window (int): Focal window size at first focal level | |
use_layerscale (bool): Whether use layerscale | |
layerscale_value (float): Initial layerscale value | |
use_postln (bool): Whether use layernorm after modulation | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution=None, | |
mlp_ratio=4.0, | |
drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
focal_level=1, | |
focal_window=3, | |
max_kh=None, | |
use_layerscale=False, | |
layerscale_value=1e-4, | |
use_postln=False, | |
use_postln_in_modulation=False, | |
normalize_modulator=False, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.mlp_ratio = mlp_ratio | |
self.focal_window = focal_window | |
self.focal_level = focal_level | |
self.use_postln = use_postln | |
self.norm1 = norm_layer(dim) | |
self.modulation = FocalModulation( | |
dim, | |
proj_drop=drop, | |
focal_window=focal_window, | |
focal_level=self.focal_level, | |
max_kh=max_kh, | |
use_postln_in_modulation=use_postln_in_modulation, | |
normalize_modulator=normalize_modulator, | |
) | |
self.drop_path = DropPath( | |
drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop) | |
self.gamma_1 = 1.0 | |
self.gamma_2 = 1.0 | |
if use_layerscale: | |
self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), | |
requires_grad=True) | |
self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), | |
requires_grad=True) | |
self.H = None | |
self.W = None | |
def forward(self, x): | |
H, W = self.H, self.W | |
B, L, C = x.shape | |
shortcut = x | |
# Focal Modulation | |
x = x if self.use_postln else self.norm1(x) | |
x = x.view(B, H, W, C) | |
x = self.modulation(x).view(B, H * W, C) | |
x = x if not self.use_postln else self.norm1(x) | |
# FFN | |
x = shortcut + self.drop_path(self.gamma_1 * x) | |
x = x + self.drop_path(self.gamma_2 * (self.norm2( | |
self.mlp(x)) if self.use_postln else self.mlp(self.norm2(x)))) | |
return x | |
def extra_repr(self) -> str: | |
return f'dim={self.dim}, input_resolution={self.input_resolution}, ' f'mlp_ratio={self.mlp_ratio}' | |
def flops(self): | |
flops = 0 | |
H, W = self.input_resolution | |
# norm1 | |
flops += self.dim * H * W | |
# W-MSA/SW-MSA | |
flops += self.modulation.flops(H * W) | |
# mlp | |
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio | |
# norm2 | |
flops += self.dim * H * W | |
return flops | |
class BasicLayer(nn.Module): | |
"""A basic Focal Transformer layer for one stage. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
depth (int): Number of blocks. | |
window_size (int): Local window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
focal_level (int): Number of focal levels | |
focal_window (int): Focal window size at first focal level | |
use_layerscale (bool): Whether use layerscale | |
layerscale_value (float): Initial layerscale value | |
use_postln (bool): Whether use layernorm after modulation | |
""" | |
def __init__( | |
self, | |
dim, | |
out_dim, | |
input_resolution, | |
depth, | |
mlp_ratio=4.0, | |
drop=0.0, | |
drop_path=0.0, | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
downsample_kernel=[], | |
use_checkpoint=False, | |
focal_level=1, | |
focal_window=1, | |
use_conv_embed=False, | |
use_layerscale=False, | |
layerscale_value=1e-4, | |
use_postln=False, | |
use_postln_in_modulation=False, | |
normalize_modulator=False, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList([ | |
FocalNetBlock( | |
dim=dim, | |
input_resolution=input_resolution, | |
mlp_ratio=mlp_ratio, | |
drop=drop, | |
drop_path=drop_path[i] | |
if isinstance(drop_path, list) else drop_path, | |
norm_layer=norm_layer, | |
focal_level=focal_level, | |
focal_window=focal_window, | |
use_layerscale=use_layerscale, | |
layerscale_value=layerscale_value, | |
use_postln=use_postln, | |
use_postln_in_modulation=use_postln_in_modulation, | |
normalize_modulator=normalize_modulator, | |
) for i in range(depth) | |
]) | |
if downsample is not None: | |
self.downsample = downsample( | |
img_size=input_resolution, | |
patch_size=downsample_kernel, | |
in_chans=dim, | |
embed_dim=out_dim, | |
use_conv_embed=use_conv_embed, | |
norm_layer=norm_layer, | |
is_stem=False, | |
) | |
else: | |
self.downsample = None | |
def forward(self, x, H, W): | |
for blk in self.blocks: | |
blk.H, blk.W = H, W | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
if self.downsample is not None: | |
x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W) | |
x, Ho, Wo = self.downsample(x) | |
else: | |
Ho, Wo = H, W | |
return x, Ho, Wo | |
def extra_repr(self) -> str: | |
return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}' | |
def flops(self): | |
flops = 0 | |
for blk in self.blocks: | |
flops += blk.flops() | |
if self.downsample is not None: | |
flops += self.downsample.flops() | |
return flops | |
class PatchEmbed(nn.Module): | |
r"""Image to Patch Embedding | |
Args: | |
img_size (int): Image size. Default: 224. | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__(self, | |
img_size=(224, 224), | |
patch_size=[4, 4], | |
in_chans=3, | |
embed_dim=96, | |
use_conv_embed=False, | |
norm_layer=None, | |
is_stem=False): | |
super().__init__() | |
# patch_size = to_2tuple(patch_size) | |
patches_resolution = [ | |
img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
] | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.patches_resolution = patches_resolution | |
self.num_patches = patches_resolution[0] * patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
if use_conv_embed: | |
# if we choose to use conv embedding, then we treat the stem and non-stem differently | |
if is_stem: | |
kernel_size = 7 | |
padding = 2 | |
stride = 4 | |
else: | |
kernel_size = 3 | |
padding = 1 | |
stride = 2 | |
self.proj = nn.Conv2d(in_chans, | |
embed_dim, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding) | |
else: | |
self.proj = nn.Conv2d(in_chans, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=patch_size) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
B, C, H, W = x.shape | |
x = self.proj(x) | |
H, W = x.shape[2:] | |
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C | |
if self.norm is not None: | |
x = self.norm(x) | |
return x, H, W | |
def flops(self): | |
Ho, Wo = self.patches_resolution | |
flops = Ho * Wo * self.embed_dim * self.in_chans * ( | |
self.patch_size[0] * self.patch_size[1]) | |
if self.norm is not None: | |
flops += Ho * Wo * self.embed_dim | |
return flops | |
class FocalSVTR(nn.Module): | |
r"""Focal Modulation Networks (FocalNets) | |
Args: | |
img_size (int | tuple(int)): Input image size. Default [32, 128] | |
patch_size (int | tuple(int)): Patch size. Default: [4, 4] | |
in_chans (int): Number of input image channels. Default: 3 | |
num_classes (int): Number of classes for classification head. Default: 1000 | |
embed_dim (int): Patch embedding dimension. Default: 96 | |
depths (tuple(int)): Depth of each Focal Transformer layer. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 | |
drop_rate (float): Dropout rate. Default: 0 | |
drop_path_rate (float): Stochastic depth rate. Default: 0.1 | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
patch_norm (bool): If True, add normalization after patch embedding. Default: True | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | |
focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1] | |
focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1] | |
use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, | |
but we do not use it by default. Default: False | |
use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False | |
layerscale_value (float): Value for layer scale. Default: 1e-4 | |
use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models) | |
""" | |
def __init__( | |
self, | |
img_size=[32, 128], | |
patch_size=[4, 4], | |
out_channels=256, | |
out_char_num=25, | |
in_channels=3, | |
embed_dim=96, | |
depths=[3, 6, 3], | |
sub_k=[[2, 1], [2, 1], [1, 1]], | |
last_stage=False, | |
mlp_ratio=4.0, | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
norm_layer=nn.LayerNorm, | |
patch_norm=True, | |
use_checkpoint=False, | |
focal_levels=[6, 6, 6], | |
focal_windows=[3, 3, 3], | |
use_conv_embed=False, | |
use_layerscale=False, | |
layerscale_value=1e-4, | |
use_postln=False, | |
use_postln_in_modulation=False, | |
normalize_modulator=False, | |
feat2d=False, | |
**kwargs, | |
): | |
super().__init__() | |
self.num_layers = len(depths) | |
embed_dim = [embed_dim * (2**i) for i in range(self.num_layers)] | |
self.feat2d = feat2d | |
self.embed_dim = embed_dim | |
self.patch_norm = patch_norm | |
self.num_features = embed_dim[-1] | |
self.mlp_ratio = mlp_ratio | |
self.patch_embed = nn.Sequential( | |
ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=embed_dim[0] // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias=None, | |
), | |
ConvBNLayer( | |
in_channels=embed_dim[0] // 2, | |
out_channels=embed_dim[0], | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias=None, | |
), | |
) | |
patches_resolution = [ | |
img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
] | |
self.patches_resolution = patches_resolution | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
] # stochastic depth decay rule | |
# build layers | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
layer = BasicLayer( | |
dim=embed_dim[i_layer], | |
out_dim=embed_dim[i_layer + 1] if | |
(i_layer < self.num_layers - 1) else None, | |
input_resolution=patches_resolution, | |
depth=depths[i_layer], | |
mlp_ratio=self.mlp_ratio, | |
drop=drop_rate, | |
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
norm_layer=norm_layer, | |
downsample=PatchEmbed if | |
(i_layer < self.num_layers - 1) else None, | |
downsample_kernel=sub_k[i_layer], | |
focal_level=focal_levels[i_layer], | |
focal_window=focal_windows[i_layer], | |
use_conv_embed=use_conv_embed, | |
use_checkpoint=use_checkpoint, | |
use_layerscale=use_layerscale, | |
layerscale_value=layerscale_value, | |
use_postln=use_postln, | |
use_postln_in_modulation=use_postln_in_modulation, | |
normalize_modulator=normalize_modulator, | |
) | |
patches_resolution = [ | |
patches_resolution[0] // sub_k[i_layer][0], | |
patches_resolution[1] // sub_k[i_layer][1] | |
] | |
self.layers.append(layer) | |
self.out_channels = self.num_features | |
self.last_stage = last_stage | |
if last_stage: | |
self.out_channels = out_channels | |
self.last_conv = nn.Linear(self.num_features, | |
self.out_channels, | |
bias=False) | |
self.hardswish = nn.Hardswish() | |
self.dropout = nn.Dropout(p=0.1) | |
# self.avg_pool = nn.AdaptiveAvgPool2d([1, out_char_num]) | |
# self.last_conv = nn.Conv2d( | |
# in_channels=self.num_features, | |
# out_channels=self.out_channels, | |
# kernel_size=1, | |
# stride=1, | |
# padding=0, | |
# bias=False, | |
# ) | |
# self.hardswish = nn.Hardswish() | |
# self.dropout = nn.Dropout(p=0.1) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, | |
mode='fan_out', | |
nonlinearity='relu') | |
def no_weight_decay(self): | |
return {'patch_embed', 'downsample'} | |
def forward(self, x): | |
if len(x.shape) == 5: | |
x = x.flatten(0, 1) | |
x = self.patch_embed(x) | |
H, W = x.shape[2:] | |
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C | |
x = self.pos_drop(x) | |
for layer in self.layers: | |
x, H, W = layer(x, H, W) | |
if self.feat2d: | |
x = x.transpose(1, 2).reshape(-1, self.num_features, H, W) | |
if self.last_stage: | |
x = x.reshape(-1, H, W, self.num_features).mean(1) | |
x = self.last_conv(x) | |
x = self.hardswish(x) | |
x = self.dropout(x) | |
# x = self.avg_pool(x.transpose(1, 2).reshape(-1, self.num_features, H, W)) | |
# x = self.last_conv(x) | |
# x = self.hardswish(x) | |
# x = self.dropout(x) | |
# x = x.flatten(2).transpose(1, 2) | |
return x | |
def flops(self): | |
flops = 0 | |
flops += self.patch_embed.flops() | |
for i, layer in enumerate(self.layers): | |
flops += layer.flops() | |
flops += self.num_features * self.patches_resolution[ | |
0] * self.patches_resolution[1] // (2**self.num_layers) | |
return flops | |