Spaces:
Running
Running
import numpy as np | |
import torch | |
from .ctc_postprocess import BaseRecLabelDecode | |
class SRNLabelDecode(BaseRecLabelDecode): | |
"""Convert between text-label and text-index.""" | |
def __init__(self, | |
character_dict_path=None, | |
use_space_char=False, | |
**kwargs): | |
super(SRNLabelDecode, self).__init__(character_dict_path, | |
use_space_char) | |
self.max_len = 25 | |
def add_special_char(self, dict_character): | |
dict_character = dict_character + ['<BOS>', '<EOS>'] | |
self.start_idx = len(dict_character) - 2 | |
self.end_idx = len(dict_character) - 1 | |
return dict_character | |
def decode(self, text_index, text_prob=None, is_remove_duplicate=False): | |
"""convert text-index into text-label.""" | |
result_list = [] | |
ignored_tokens = self.get_ignored_tokens() | |
# [B,25] | |
batch_size = len(text_index) | |
for batch_idx in range(batch_size): | |
char_list = [] | |
conf_list = [] | |
for idx in range(len(text_index[batch_idx])): | |
# print(f"text_index[{batch_idx}][{idx}]:{text_index[batch_idx][idx]}") | |
if text_index[batch_idx][idx] in ignored_tokens: | |
continue | |
if int(text_index[batch_idx][idx]) == int(self.end_idx): | |
if text_prob is None and idx == 0: | |
continue | |
else: | |
break | |
if is_remove_duplicate: | |
# only for predict | |
if idx > 0 and text_index[batch_idx][ | |
idx - 1] == text_index[batch_idx][idx]: | |
continue | |
char_list.append(self.character[int( | |
text_index[batch_idx][idx])]) | |
if text_prob is not None: | |
conf_list.append(text_prob[batch_idx][idx]) | |
else: | |
conf_list.append(1) | |
text = ''.join(char_list) | |
result_list.append((text, np.mean(conf_list).tolist())) | |
return result_list | |
def __call__(self, preds, batch=None, *args, **kwargs): | |
if isinstance(preds, torch.Tensor): | |
preds = preds.reshape([-1, self.max_len, preds.shape[-1]]) | |
preds = preds.detach().cpu().numpy() | |
else: | |
preds = preds[-1] | |
preds = preds.reshape([-1, self.max_len, | |
preds.shape[-1]]).detach().cpu().numpy() | |
preds_idx = preds.argmax(axis=2) | |
preds_prob = preds.max(axis=2) | |
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) | |
if batch is None: | |
return text | |
label = batch[1].cpu().numpy() | |
# print(f"label.shape:{label.shape}") | |
label = self.decode(label, is_remove_duplicate=False) | |
return text, label | |
def get_ignored_tokens(self): | |
return [self.start_idx, self.end_idx] | |