Spaces:
Running
Running
| from time import sleep | |
| from typing import Any, Dict, Tuple, List, Optional | |
| import cv2 | |
| import gradio | |
| import DeepFakeAI.globals | |
| from DeepFakeAI import wording | |
| from DeepFakeAI.capturer import get_video_frame, get_video_frame_total | |
| from DeepFakeAI.face_analyser import get_one_face | |
| from DeepFakeAI.face_reference import get_face_reference, set_face_reference | |
| from DeepFakeAI.predictor import predict_frame | |
| from DeepFakeAI.processors.frame.core import load_frame_processor_module | |
| from DeepFakeAI.typing import Frame | |
| from DeepFakeAI.uis import core as ui | |
| from DeepFakeAI.uis.typing import ComponentName, Update | |
| from DeepFakeAI.utilities import is_video, is_image | |
| PREVIEW_IMAGE : Optional[gradio.Image] = None | |
| PREVIEW_FRAME_SLIDER : Optional[gradio.Slider] = None | |
| def render() -> None: | |
| global PREVIEW_IMAGE | |
| global PREVIEW_FRAME_SLIDER | |
| with gradio.Box(): | |
| preview_image_args: Dict[str, Any] = { | |
| 'label': wording.get('preview_image_label') | |
| } | |
| preview_frame_slider_args: Dict[str, Any] = { | |
| 'label': wording.get('preview_frame_slider_label'), | |
| 'step': 1, | |
| 'visible': False | |
| } | |
| if is_image(DeepFakeAI.globals.target_path): | |
| target_frame = cv2.imread(DeepFakeAI.globals.target_path) | |
| preview_frame = extract_preview_frame(target_frame) | |
| preview_image_args['value'] = ui.normalize_frame(preview_frame) | |
| if is_video(DeepFakeAI.globals.target_path): | |
| temp_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) | |
| preview_frame = extract_preview_frame(temp_frame) | |
| preview_image_args['value'] = ui.normalize_frame(preview_frame) | |
| preview_image_args['visible'] = True | |
| preview_frame_slider_args['value'] = DeepFakeAI.globals.reference_frame_number | |
| preview_frame_slider_args['maximum'] = get_video_frame_total(DeepFakeAI.globals.target_path) | |
| preview_frame_slider_args['visible'] = True | |
| PREVIEW_IMAGE = gradio.Image(**preview_image_args) | |
| PREVIEW_FRAME_SLIDER = gradio.Slider(**preview_frame_slider_args) | |
| ui.register_component('preview_frame_slider', PREVIEW_FRAME_SLIDER) | |
| def listen() -> None: | |
| PREVIEW_FRAME_SLIDER.change(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ]) | |
| update_component_names : List[ComponentName] =\ | |
| [ | |
| 'source_file', | |
| 'target_file', | |
| 'face_recognition_dropdown', | |
| 'reference_face_distance_slider', | |
| 'frame_processors_checkbox_group' | |
| ] | |
| for component_name in update_component_names: | |
| component = ui.get_component(component_name) | |
| if component: | |
| component.change(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ]) | |
| select_component_names : List[ComponentName] =\ | |
| [ | |
| 'reference_face_position_gallery', | |
| 'face_analyser_direction_dropdown', | |
| 'face_analyser_age_dropdown', | |
| 'face_analyser_gender_dropdown' | |
| ] | |
| for component_name in select_component_names: | |
| component = ui.get_component(component_name) | |
| if component: | |
| component.select(update, inputs = PREVIEW_FRAME_SLIDER, outputs = [ PREVIEW_IMAGE, PREVIEW_FRAME_SLIDER ]) | |
| def update(frame_number : int = 0) -> Tuple[Update, Update]: | |
| sleep(0.1) | |
| if is_image(DeepFakeAI.globals.target_path): | |
| target_frame = cv2.imread(DeepFakeAI.globals.target_path) | |
| preview_frame = extract_preview_frame(target_frame) | |
| return gradio.update(value = ui.normalize_frame(preview_frame)), gradio.update(value = None, maximum = None, visible = False) | |
| if is_video(DeepFakeAI.globals.target_path): | |
| DeepFakeAI.globals.reference_frame_number = frame_number | |
| video_frame_total = get_video_frame_total(DeepFakeAI.globals.target_path) | |
| temp_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) | |
| preview_frame = extract_preview_frame(temp_frame) | |
| return gradio.update(value = ui.normalize_frame(preview_frame)), gradio.update(maximum = video_frame_total, visible = True) | |
| return gradio.update(value = None), gradio.update(value = None, maximum = None, visible = False) | |
| def extract_preview_frame(temp_frame : Frame) -> Frame: | |
| if predict_frame(temp_frame): | |
| return cv2.GaussianBlur(temp_frame, (99, 99), 0) | |
| source_face = get_one_face(cv2.imread(DeepFakeAI.globals.source_path)) if DeepFakeAI.globals.source_path else None | |
| temp_frame = reduce_preview_frame(temp_frame) | |
| if 'reference' in DeepFakeAI.globals.face_recognition and not get_face_reference(): | |
| reference_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) | |
| reference_face = get_one_face(reference_frame, DeepFakeAI.globals.reference_face_position) | |
| set_face_reference(reference_face) | |
| reference_face = get_face_reference() if 'reference' in DeepFakeAI.globals.face_recognition else None | |
| for frame_processor in DeepFakeAI.globals.frame_processors: | |
| frame_processor_module = load_frame_processor_module(frame_processor) | |
| if frame_processor_module.pre_process(): | |
| temp_frame = frame_processor_module.process_frame( | |
| source_face, | |
| reference_face, | |
| temp_frame | |
| ) | |
| return temp_frame | |
| def reduce_preview_frame(temp_frame : Frame, max_height : int = 480) -> Frame: | |
| height, width = temp_frame.shape[:2] | |
| if height > max_height: | |
| scale = max_height / height | |
| max_width = int(width * scale) | |
| temp_frame = cv2.resize(temp_frame, (max_width, max_height)) | |
| return temp_frame | |