Upload 4 files
Browse files- README.md +6 -5
- app.py +105 -0
- requirements.txt +8 -0
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title: PDF
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.27.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: LLama PDF
|
3 |
+
emoji: π
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.27.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: llama2
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary modules for processing documents, embeddings, Q&A, etc. from 'langchain' library.
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
load_dotenv() # Load environment variables from a .env file.
|
4 |
+
from langchain.document_loaders import PyPDFLoader # For loading and reading PDF documents.
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter # For splitting large texts into smaller chunks.
|
6 |
+
from langchain.vectorstores import Chroma # Vector storage system for embeddings.
|
7 |
+
from langchain.llms import CTransformers # For loading transformer models.
|
8 |
+
# from InstructorEmbedding import INSTRUCTOR # Not clear without context, possibly a custom embedding.
|
9 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings # Embeddings from HuggingFace models with instructions.
|
10 |
+
from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
|
11 |
+
from langchain.embeddings import LlamaCppEmbeddings # Embeddings using the Llama model.
|
12 |
+
from langchain.chains import RetrievalQA # Q&A retrieval system.
|
13 |
+
from langchain.embeddings import OpenAIEmbeddings # Embeddings from OpenAI models.
|
14 |
+
from langchain.vectorstores import FAISS # Another vector storage system for embeddings.
|
15 |
+
|
16 |
+
# Import Streamlit for creating a web application and other necessary modules for file handling.
|
17 |
+
import streamlit as st # Main library for creating the web application.
|
18 |
+
import tempfile # For creating temporary directories and files.
|
19 |
+
import os # For handling file and directory paths.
|
20 |
+
|
21 |
+
# Import a handler for streaming outputs.
|
22 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler # For live updates in the Streamlit app.
|
23 |
+
|
24 |
+
st.title("ChatPDF")
|
25 |
+
|
26 |
+
st.markdown("""
|
27 |
+
ChatPDF is a web application that can answer questions based on a PDF document. To use the app, simply upload a PDF file and type your question in the input box. The app will then use a powerful language model to generate an answer to your question.
|
28 |
+
""")
|
29 |
+
|
30 |
+
# Create a visual separator in the app.
|
31 |
+
st.write("---")
|
32 |
+
|
33 |
+
# Add a file uploader widget for users to upload their PDF files.
|
34 |
+
uploaded_file = st.sidebar.file_uploader("Upload your PDF file!", type=['pdf'])
|
35 |
+
# Another visual separator after the file uploader.
|
36 |
+
st.write("---")
|
37 |
+
|
38 |
+
# Function to convert the uploaded PDF into a readable document format.
|
39 |
+
def pdf_to_document(uploaded_file):
|
40 |
+
# Create a temporary directory for storing the uploaded PDF.
|
41 |
+
temp_dir = tempfile.TemporaryDirectory()
|
42 |
+
# Get the path where the uploaded PDF will be stored temporarily.
|
43 |
+
temp_filepath = os.path.join(temp_dir.name, uploaded_file.name)
|
44 |
+
|
45 |
+
# Save the uploaded PDF to the temporary path.
|
46 |
+
with open(temp_filepath, "wb") as f:
|
47 |
+
f.write(uploaded_file.getvalue())
|
48 |
+
|
49 |
+
# Load the PDF and split it into individual pages.
|
50 |
+
loader = PyPDFLoader(temp_filepath)
|
51 |
+
pages = loader.load_and_split()
|
52 |
+
return pages
|
53 |
+
|
54 |
+
# Check if a user has uploaded a file.
|
55 |
+
if uploaded_file is not None:
|
56 |
+
# Convert the uploaded PDF into a document format.
|
57 |
+
pages = pdf_to_document(uploaded_file)
|
58 |
+
|
59 |
+
# Initialize a tool to split the document into smaller textual chunks.
|
60 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
61 |
+
chunk_size = 300, # Define the size of each chunk.
|
62 |
+
chunk_overlap = 20, # Define how much chunks can overlap.
|
63 |
+
length_function = len # Function to determine the length of texts.
|
64 |
+
)
|
65 |
+
# Split the document into chunks.
|
66 |
+
texts = text_splitter.split_documents(pages)
|
67 |
+
|
68 |
+
## Below are examples of different embedding techniques, but they are commented out.
|
69 |
+
|
70 |
+
# Load the desired embeddings model.
|
71 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
|
72 |
+
model_kwargs={'device': 'cpu'})
|
73 |
+
|
74 |
+
# Load the textual chunks into the Chroma vector store.
|
75 |
+
db = Chroma.from_documents(texts, embeddings)
|
76 |
+
|
77 |
+
# Custom handler to stream outputs live to the Streamlit application.
|
78 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
79 |
+
class StreamHandler(BaseCallbackHandler):
|
80 |
+
def __init__(self, container, initial_text=""):
|
81 |
+
self.container = container # Streamlit container to display text.
|
82 |
+
self.text=initial_text
|
83 |
+
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
84 |
+
self.text+=token # Add new tokens to the text.
|
85 |
+
self.container.markdown(self.text) # Display the text.
|
86 |
+
|
87 |
+
# Header for the Q&A section of the web app.
|
88 |
+
st.header("Ask the PDF a question!")
|
89 |
+
# Input box for users to type their questions.
|
90 |
+
question = st.text_input('Type your question')
|
91 |
+
|
92 |
+
# Check if the user has pressed the 'Ask' button.
|
93 |
+
if st.button('Ask'):
|
94 |
+
# Display a spinner while processing the question.
|
95 |
+
with st.spinner('Processing...'):
|
96 |
+
# Space to display the answer.
|
97 |
+
chat_box = st.empty()
|
98 |
+
# Initialize the handler to stream outputs.
|
99 |
+
stream_hander = StreamHandler(chat_box)
|
100 |
+
|
101 |
+
# Initialize the Q&A model and chain.
|
102 |
+
llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q2_K.bin", model_type="llama", callbacks=[stream_hander])
|
103 |
+
qa_chain = RetrievalQA.from_chain_type(llm, retriever=db.as_retriever())
|
104 |
+
# Get the answer to the user's question.
|
105 |
+
qa_chain({"query": question})
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
pypdf
|
3 |
+
chromadb
|
4 |
+
tiktoken
|
5 |
+
pysqlite3-binary
|
6 |
+
streamlit-extras
|
7 |
+
InstructorEmbedding
|
8 |
+
sentence-transformers
|