|
import streamlit as st |
|
from dotenv import load_dotenv |
|
from PyPDF2 import PdfReader |
|
from langchain.text_splitter import CharacterTextSplitter,RecursiveCharacterTextSplitter |
|
from langchain.llms import CTransformers |
|
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings |
|
from langchain.vectorstores import FAISS, Chroma |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.chains import ConversationalRetrievalChain |
|
from htmlTemplates import css, bot_template, user_template |
|
from langchain.llms import HuggingFaceHub |
|
|
|
def get_pdf_text(pdf_docs): |
|
text = '' |
|
pdf_file_ = open(pdf_docs,'rb') |
|
|
|
pdf_reader = PdfReader(pdf_file_) |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
|
|
return text |
|
|
|
|
|
def get_text_chunks(text): |
|
print('text = ',text) |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size = 300, |
|
chunk_overlap = 20, |
|
length_function= len |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
chunks = text_splitter.split_text(text) |
|
print('chunks = ', chunks) |
|
return chunks |
|
|
|
|
|
def get_vectorstore(text_chunks): |
|
|
|
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2', |
|
model_kwargs={'device': 'cpu'}) |
|
|
|
|
|
|
|
vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings) |
|
|
|
return vectorstore |
|
|
|
|
|
def get_conversation_chain(vectorstore): |
|
|
|
|
|
config = {'max_new_tokens': 2048} |
|
llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q2_K.bin", model_type="llama", config=config) |
|
memory = ConversationBufferMemory( |
|
memory_key='chat_history', return_messages=True) |
|
conversation_chain = ConversationalRetrievalChain.from_llm( |
|
llm=llm, |
|
retriever=vectorstore.as_retriever(), |
|
memory=memory |
|
) |
|
return conversation_chain |
|
|
|
|
|
def handle_userinput(user_question): |
|
response = st.session_state.conversation({'question': user_question}) |
|
st.session_state.chat_history = response['chat_history'] |
|
|
|
for i, message in enumerate(st.session_state.chat_history): |
|
if i % 2 == 0: |
|
st.write(user_template.replace( |
|
"{{MSG}}", message.content), unsafe_allow_html=True) |
|
else: |
|
st.write(bot_template.replace( |
|
"{{MSG}}", message.content), unsafe_allow_html=True) |
|
|
|
def get_text_file(docs): |
|
text = f.read() |
|
return text |
|
|
|
def get_csv_file(docs): |
|
import pandas as pd |
|
text = '' |
|
|
|
data = pd.read_csv(docs) |
|
|
|
for index, row in data.iterrows(): |
|
item_name = row[0] |
|
row_text = item_name |
|
for col_name in data.columns[1:]: |
|
row_text += '{} is {} '.format(col_name, row[col_name]) |
|
text += row_text + '\n' |
|
|
|
return text |
|
|
|
def get_json_file(docs): |
|
import json |
|
text = '' |
|
with open(docs, 'r') as f: |
|
json_data = json.load(f) |
|
|
|
for f_key, f_value in json_data.items(): |
|
for s_value in f_value: |
|
text += str(f_key) + str(s_value) |
|
text += '\n' |
|
|
|
return text |
|
|
|
def get_hwp_file(docs): |
|
pass |
|
|
|
def get_docs_file(docs): |
|
pass |
|
|
|
|
|
def main(): |
|
load_dotenv() |
|
st.set_page_config(page_title="Chat with multiple PDFs", |
|
page_icon=":books:") |
|
st.write(css, unsafe_allow_html=True) |
|
|
|
if "conversation" not in st.session_state: |
|
st.session_state.conversation = None |
|
if "chat_history" not in st.session_state: |
|
st.session_state.chat_history = None |
|
|
|
st.header("Chat with multiple PDFs :books:") |
|
user_question = st.text_input("Ask a question about your documents:") |
|
if user_question: |
|
handle_userinput(user_question) |
|
|
|
with st.sidebar: |
|
st.subheader("Your documents") |
|
docs = st.file_uploader( |
|
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True) |
|
if st.button("Process"): |
|
with st.spinner("Processing"): |
|
|
|
raw_text = "" |
|
|
|
for file in docs: |
|
print('file - type : ', file.type) |
|
if file.type == 'text/plain': |
|
|
|
raw_text += get_text_file(file) |
|
elif file.type in ['application/octet-stream', 'application/pdf']: |
|
|
|
raw_text += get_pdf_text(file) |
|
elif file.type == 'text/csv': |
|
|
|
raw_text += get_csv_file(file) |
|
elif file.type == 'application/json': |
|
|
|
raw_text += get_json_file(file) |
|
elif file.type == 'application/x-hwp': |
|
|
|
raw_text += get_hwp_file(file) |
|
elif file.type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document': |
|
|
|
raw_text += get_docs_file(file) |
|
|
|
|
|
|
|
text_chunks = get_text_chunks(raw_text) |
|
|
|
|
|
vectorstore = get_vectorstore(text_chunks) |
|
|
|
|
|
st.session_state.conversation = get_conversation_chain( |
|
vectorstore) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|