qorgh346 commited on
Commit
f11d54b
1 Parent(s): 273c862

1023-commit

Browse files
Files changed (3) hide show
  1. app.py +160 -0
  2. htmlTemplates.py +44 -0
  3. requirements.txt +13 -0
app.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from dotenv import load_dotenv
3
+ from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
4
+ from langchain.vectorstores import FAISS
5
+ from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
6
+ from langchain.memory import ConversationBufferMemory
7
+ from langchain.chains import ConversationalRetrievalChain
8
+ from htmlTemplates import css, bot_template, user_template
9
+ from langchain.llms import LlamaCpp # For loading transformer models.
10
+ from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
11
+ from tempfile import NamedTemporaryFile
12
+ from huggingface_hub import hf_hub_download
13
+
14
+
15
+ def get_pdf_text(pdf_docs):
16
+ with NamedTemporaryFile() as temp_file:
17
+ temp_file.write(pdf_docs.getvalue())
18
+ temp_file.seek(0)
19
+ pdf_loader = PyPDFLoader(temp_file.name)
20
+ pdf_doc = pdf_loader.load()
21
+ return pdf_doc
22
+
23
+
24
+ def get_text_file(docs):
25
+ with NamedTemporaryFile() as temp_file:
26
+ temp_file.write(docs.getvalue())
27
+ temp_file.seek(0)
28
+ text_loader = TextLoader(temp_file.name)
29
+ text_doc = text_loader.load()
30
+
31
+ return text_doc
32
+
33
+
34
+ def get_csv_file(docs):
35
+ with NamedTemporaryFile() as temp_file:
36
+ temp_file.write(docs.getvalue())
37
+ temp_file.seek(0)
38
+ text_loader = CSVLoader(temp_file.name)
39
+ text_doc = text_loader.load()
40
+
41
+ return text_doc
42
+
43
+
44
+ def get_json_file(docs):
45
+ with NamedTemporaryFile() as temp_file:
46
+ temp_file.write(docs.getvalue())
47
+ temp_file.seek(0)
48
+ json_loader = JSONLoader(temp_file.name,
49
+ jq_schema='.scans[].relationships',
50
+ text_content=False)
51
+ json_doc = json_loader.load()
52
+
53
+ return json_doc
54
+
55
+
56
+ def get_text_chunks(documents):
57
+ text_splitter = RecursiveCharacterTextSplitter(
58
+ chunk_size=1000,
59
+ chunk_overlap=200,
60
+ length_function=len
61
+ )
62
+
63
+ documents = text_splitter.split_documents(documents)
64
+ return documents
65
+
66
+
67
+ def get_vectorstore(text_chunks):
68
+ # Load the desired embeddings model.
69
+ embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2',
70
+ model_kwargs={'device': 'cpu'})
71
+ vectorstore = FAISS.from_documents(text_chunks, embeddings)
72
+ return vectorstore
73
+
74
+
75
+ def get_conversation_chain(vectorstore):
76
+ model_name_or_path = 'TheBloke/Llama-2-7B-chat-GGUF'
77
+ model_basename = 'llama-2-7b-chat.Q2_K.gguf'
78
+ model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
79
+
80
+ llm = LlamaCpp(model_path=model_path,
81
+ n_ctx=4086,
82
+ input={"temperature": 0.75, "max_length": 2000, "top_p": 1},
83
+ verbose=True, )
84
+ memory = ConversationBufferMemory(
85
+ memory_key='chat_history', return_messages=True)
86
+ conversation_chain = ConversationalRetrievalChain.from_llm(
87
+ llm=llm,
88
+ retriever=vectorstore.as_retriever(),
89
+ memory=memory
90
+ )
91
+ return conversation_chain
92
+
93
+
94
+ def handle_userinput(user_question):
95
+ print('user_question => ', user_question)
96
+ response = st.session_state.conversation({'question': user_question})
97
+ st.session_state.chat_history = response['chat_history']
98
+
99
+ for i, message in enumerate(st.session_state.chat_history):
100
+ if i % 2 == 0:
101
+ st.write(user_template.replace(
102
+ "{{MSG}}", message.content), unsafe_allow_html=True)
103
+ else:
104
+ st.write(bot_template.replace(
105
+ "{{MSG}}", message.content), unsafe_allow_html=True)
106
+
107
+
108
+ def main():
109
+ load_dotenv()
110
+ st.set_page_config(page_title="Chat with multiple PDFs",
111
+ page_icon=":books:")
112
+ st.write(css, unsafe_allow_html=True)
113
+
114
+ if "conversation" not in st.session_state:
115
+ st.session_state.conversation = None
116
+ if "chat_history" not in st.session_state:
117
+ st.session_state.chat_history = None
118
+
119
+ st.header("Chat with multiple PDFs :books:")
120
+ user_question = st.text_input("Ask a question about your documents:")
121
+ if user_question:
122
+ handle_userinput(user_question)
123
+
124
+ with st.sidebar:
125
+ st.subheader("Your documents")
126
+ docs = st.file_uploader(
127
+ "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
128
+ if st.button("Process"):
129
+ with st.spinner("Processing"):
130
+ # get pdf text
131
+ doc_list = []
132
+
133
+ for file in docs:
134
+ print('file - type : ', file.type)
135
+ if file.type == 'text/plain':
136
+ # file is .txt
137
+ doc_list.extend(get_text_file(file))
138
+ elif file.type in ['application/octet-stream', 'application/pdf']:
139
+ # file is .pdf
140
+ doc_list.extend(get_pdf_text(file))
141
+ elif file.type == 'text/csv':
142
+ # file is .csv
143
+ doc_list.extend(get_csv_file(file))
144
+ elif file.type == 'application/json':
145
+ # file is .json
146
+ doc_list.extend(get_json_file(file))
147
+
148
+ # get the text chunks
149
+ text_chunks = get_text_chunks(doc_list)
150
+
151
+ # create vector store
152
+ vectorstore = get_vectorstore(text_chunks)
153
+
154
+ # create conversation chain
155
+ st.session_state.conversation = get_conversation_chain(
156
+ vectorstore)
157
+
158
+
159
+ if __name__ == '__main__':
160
+ main()
htmlTemplates.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ css = '''
2
+ <style>
3
+ .chat-message {
4
+ padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
5
+ }
6
+ .chat-message.user {
7
+ background-color: #2b313e
8
+ }
9
+ .chat-message.bot {
10
+ background-color: #475063
11
+ }
12
+ .chat-message .avatar {
13
+ width: 20%;
14
+ }
15
+ .chat-message .avatar img {
16
+ max-width: 78px;
17
+ max-height: 78px;
18
+ border-radius: 50%;
19
+ object-fit: cover;
20
+ }
21
+ .chat-message .message {
22
+ width: 80%;
23
+ padding: 0 1.5rem;
24
+ color: #fff;
25
+ }
26
+ '''
27
+
28
+ bot_template = '''
29
+ <div class="chat-message bot">
30
+ <div class="avatar">
31
+ <img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
32
+ </div>
33
+ <div class="message">{{MSG}}</div>
34
+ </div>
35
+ '''
36
+
37
+ user_template = '''
38
+ <div class="chat-message user">
39
+ <div class="avatar">
40
+ <img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
41
+ </div>
42
+ <div class="message">{{MSG}}</div>
43
+ </div>
44
+ '''
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain
2
+ llama-cpp-python
3
+ PyPDF2==3.0.1
4
+ faiss-cpu==1.7.4
5
+ ctransformers
6
+ pypdf
7
+ chromadb
8
+ tiktoken
9
+ pysqlite3-binary
10
+ streamlit-extras
11
+ InstructorEmbedding
12
+ sentence-transformers
13
+ jq