trying-deepfake / result_all.py
tony133777's picture
new
aae9c6b
import os
import json
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, roc_auc_score, f1_score
json_files = [
os.path.join("result", "data_april14_Celeb-DF.json"),
os.path.join("result", "data_april14_DFDC.json"),
os.path.join("result", "data_april11_DeepfakeTIMIT.json"),
os.path.join("result", "data_april14_FF++.json"),
]
# Lists to store the ROC curve data
fpr_list = []
tpr_list = []
roc_auc_list = []
for json_file in json_files:
with open(json_file, "r") as f:
result = json.load(f)
# Get the actual labels and predicted probabilities or predicted labels from the result dictionary
actual_labels = result["video"]["correct_label"]
predicted_probs = result["video"]["pred"]
predicted_labels = result["video"]["pred_label"]
big_pp = [1 if P >= 0.5 else 0 for P in predicted_probs]
p_labels = [1 if label == "FAKE" else 0 for label in predicted_labels]
a_labels = [1 if label == "FAKE" else 0 for label in actual_labels]
# Calculate ROC curve and AUC
fpr, tpr, thresholds = roc_curve(a_labels, predicted_probs)
roc_auc = roc_auc_score(a_labels, predicted_probs)
f1 = f1_score(a_labels, big_pp)
# Append the data to the lists
fpr_list.append(fpr)
tpr_list.append(tpr)
roc_auc_list.append(roc_auc)
a = 0
for i in range(len(p_labels)):
if p_labels[i] == a_labels[i]:
a += 1
accuracy = sum(x == y for x, y in zip(p_labels, a_labels)) / len(p_labels)
real_acc = sum(
(x == y and y == 0) for x, y in zip(p_labels, a_labels)
) / a_labels.count(0)
fake_acc = sum(
(x == y and y == 1) for x, y in zip(p_labels, a_labels)
) / a_labels.count(1)
print(
f"{(json_file[:-5].split('_')[-1])}:\nReal accuracy {real_acc*100:.3f} Fake accuracy {fake_acc*100:.3f}, Accuracy: {accuracy*100:.3f}"
)
print(f"ROC AUC: {roc_auc:.3f}")
print(f"F1 Score: {f1:.3f}\n")
# Plot ROC curves
plt.figure()
for i in range(len(json_files)):
plt.plot(
fpr_list[i],
tpr_list[i],
label=f"{json_files[i][:-5].split('_')[-1]} (area = %0.3f)" % roc_auc_list[i],
)
plt.plot([0, 1], [0, 1], "k--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver Operating Characteristic (ROC) Curve")
plt.legend(loc="lower right")
plt.show()