Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Upload 3 files
Browse files- .gitattributes +2 -0
- dlib-19.24.1-cp311-cp311-win_amd64.whl +3 -0
- pipeline_architecture.png +3 -0
- prediction.py +342 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            dlib-19.24.1-cp311-cp311-win_amd64.whl filter=lfs diff=lfs merge=lfs -text
         | 
| 37 | 
            +
            pipeline_architecture.png filter=lfs diff=lfs merge=lfs -text
         | 
    	
        dlib-19.24.1-cp311-cp311-win_amd64.whl
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:6f1a5ee167975d7952b28e0ce4495f1d9a77644761cf5720fb66d7c6188ae496
         | 
| 3 | 
            +
            size 2825619
         | 
    	
        pipeline_architecture.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        prediction.py
    ADDED
    
    | @@ -0,0 +1,342 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import argparse
         | 
| 3 | 
            +
            import json
         | 
| 4 | 
            +
            from time import perf_counter
         | 
| 5 | 
            +
            from datetime import datetime
         | 
| 6 | 
            +
            from model.pred_func import *
         | 
| 7 | 
            +
            from model.config import load_config
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            config = load_config()
         | 
| 10 | 
            +
            print('CONFIG')
         | 
| 11 | 
            +
            print(config)
         | 
| 12 | 
            +
            def vids(
         | 
| 13 | 
            +
                ed_weight, vae_weight, root_dir="sample_prediction_data", dataset=None, num_frames=15, net=None, fp16=False
         | 
| 14 | 
            +
            ):
         | 
| 15 | 
            +
                result = set_result()
         | 
| 16 | 
            +
                r = 0
         | 
| 17 | 
            +
                f = 0
         | 
| 18 | 
            +
                count = 0
         | 
| 19 | 
            +
                
         | 
| 20 | 
            +
                model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                for filename in os.listdir(root_dir):
         | 
| 23 | 
            +
                    curr_vid = os.path.join(root_dir, filename)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                    try:
         | 
| 26 | 
            +
                        if is_video(curr_vid):
         | 
| 27 | 
            +
                            result, accuracy, count, pred = predict(
         | 
| 28 | 
            +
                                curr_vid,
         | 
| 29 | 
            +
                                model,
         | 
| 30 | 
            +
                                fp16,
         | 
| 31 | 
            +
                                result,
         | 
| 32 | 
            +
                                num_frames,
         | 
| 33 | 
            +
                                net,
         | 
| 34 | 
            +
                                "uncategorized",
         | 
| 35 | 
            +
                                count,
         | 
| 36 | 
            +
                            )
         | 
| 37 | 
            +
                            f, r = (f + 1, r) if "FAKE" == real_or_fake(pred[0]) else (f, r + 1)
         | 
| 38 | 
            +
                            print(
         | 
| 39 | 
            +
                                f"Prediction: {pred[1]} {real_or_fake(pred[0])} \t\tFake: {f} Real: {r}"
         | 
| 40 | 
            +
                            )
         | 
| 41 | 
            +
                        else:
         | 
| 42 | 
            +
                            print(f"Invalid video file: {curr_vid}. Please provide a valid video file.")
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                    except Exception as e:
         | 
| 45 | 
            +
                        print(f"An error occurred: {str(e)}")
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                return result
         | 
| 48 | 
            +
             | 
| 49 | 
            +
             | 
| 50 | 
            +
            def faceforensics(
         | 
| 51 | 
            +
                ed_weight, vae_weight, root_dir="FaceForensics\\data", dataset=None, num_frames=15, net=None, fp16=False
         | 
| 52 | 
            +
            ):
         | 
| 53 | 
            +
                vid_type = ["original_sequences", "manipulated_sequences"]
         | 
| 54 | 
            +
                result = set_result()
         | 
| 55 | 
            +
                result["video"]["compression"] = []
         | 
| 56 | 
            +
                ffdirs = [
         | 
| 57 | 
            +
                    "DeepFakeDetection",
         | 
| 58 | 
            +
                    "Deepfakes",
         | 
| 59 | 
            +
                    "Face2Face",
         | 
| 60 | 
            +
                    "FaceSwap",
         | 
| 61 | 
            +
                    "NeuralTextures",
         | 
| 62 | 
            +
                ]
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                # load files not used in the training set, the files are appended with compression type, _c23 or _c40
         | 
| 65 | 
            +
                with open(os.path.join("json_file", "ff_file_list.json")) as j_file:
         | 
| 66 | 
            +
                    ff_file = list(json.load(j_file))
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                count = 0
         | 
| 69 | 
            +
                accuracy = 0
         | 
| 70 | 
            +
                model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                for v_t in vid_type:
         | 
| 73 | 
            +
                    for dirpath, dirnames, filenames in os.walk(os.path.join(root_dir, v_t)):
         | 
| 74 | 
            +
                        klass = next(
         | 
| 75 | 
            +
                            filter(lambda x: x in dirpath.split(os.path.sep), ffdirs),
         | 
| 76 | 
            +
                            "original",
         | 
| 77 | 
            +
                        )
         | 
| 78 | 
            +
                        label = "REAL" if klass == "original" else "FAKE"
         | 
| 79 | 
            +
                        for filename in filenames:
         | 
| 80 | 
            +
                            try:
         | 
| 81 | 
            +
                                if filename in ff_file:
         | 
| 82 | 
            +
                                    curr_vid = os.path.join(dirpath, filename)
         | 
| 83 | 
            +
                                    compression = "c23" if "c23" in curr_vid else "c40"
         | 
| 84 | 
            +
                                    if is_video(curr_vid):
         | 
| 85 | 
            +
                                        result, accuracy, count, _ = predict(
         | 
| 86 | 
            +
                                            curr_vid,
         | 
| 87 | 
            +
                                            model,
         | 
| 88 | 
            +
                                            fp16,
         | 
| 89 | 
            +
                                            result,
         | 
| 90 | 
            +
                                            num_frames,
         | 
| 91 | 
            +
                                            net,
         | 
| 92 | 
            +
                                            klass,
         | 
| 93 | 
            +
                                            count,
         | 
| 94 | 
            +
                                            accuracy,
         | 
| 95 | 
            +
                                            label,
         | 
| 96 | 
            +
                                            compression,
         | 
| 97 | 
            +
                                        )
         | 
| 98 | 
            +
                                    else:
         | 
| 99 | 
            +
                                        print(f"Invalid video file: {curr_vid}. Please provide a valid video file.")
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                            except Exception as e:
         | 
| 102 | 
            +
                                print(f"An error occurred: {str(e)}")
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                return result
         | 
| 105 | 
            +
             | 
| 106 | 
            +
             | 
| 107 | 
            +
            def timit(ed_weight, vae_weight, root_dir="DeepfakeTIMIT", dataset=None, num_frames=15, net=None, fp16=False):
         | 
| 108 | 
            +
                keywords = ["higher_quality", "lower_quality"]
         | 
| 109 | 
            +
                result = set_result()
         | 
| 110 | 
            +
                model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
         | 
| 111 | 
            +
                count = 0
         | 
| 112 | 
            +
                accuracy = 0
         | 
| 113 | 
            +
                i = 0
         | 
| 114 | 
            +
                for keyword in keywords:
         | 
| 115 | 
            +
                    keyword_folder_path = os.path.join(root_dir, keyword)
         | 
| 116 | 
            +
                    for subfolder_name in os.listdir(keyword_folder_path):
         | 
| 117 | 
            +
                        subfolder_path = os.path.join(keyword_folder_path, subfolder_name)
         | 
| 118 | 
            +
                        if os.path.isdir(subfolder_path):
         | 
| 119 | 
            +
                            # Loop through the AVI files in the subfolder
         | 
| 120 | 
            +
                            for filename in os.listdir(subfolder_path):
         | 
| 121 | 
            +
                                if filename.endswith(".avi"):
         | 
| 122 | 
            +
                                    curr_vid = os.path.join(subfolder_path, filename)
         | 
| 123 | 
            +
                                    try:
         | 
| 124 | 
            +
                                        if is_video(curr_vid):
         | 
| 125 | 
            +
                                            result, accuracy, count, _ = predict(
         | 
| 126 | 
            +
                                                curr_vid,
         | 
| 127 | 
            +
                                                model,
         | 
| 128 | 
            +
                                                fp16,
         | 
| 129 | 
            +
                                                result,
         | 
| 130 | 
            +
                                                num_frames,
         | 
| 131 | 
            +
                                                net,
         | 
| 132 | 
            +
                                                "DeepfakeTIMIT",
         | 
| 133 | 
            +
                                                count,
         | 
| 134 | 
            +
                                                accuracy,
         | 
| 135 | 
            +
                                                "FAKE",
         | 
| 136 | 
            +
                                            )
         | 
| 137 | 
            +
                                        else:
         | 
| 138 | 
            +
                                            print(f"Invalid video file: {curr_vid}. Please provide a valid video file.")
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                                    except Exception as e:
         | 
| 141 | 
            +
                                        print(f"An error occurred: {str(e)}")
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                return result
         | 
| 144 | 
            +
             | 
| 145 | 
            +
             | 
| 146 | 
            +
            def dfdc(
         | 
| 147 | 
            +
                ed_weight,
         | 
| 148 | 
            +
                vae_weight,
         | 
| 149 | 
            +
                root_dir="deepfake-detection-challenge\\train_sample_videos",
         | 
| 150 | 
            +
                dataset=None,
         | 
| 151 | 
            +
                num_frames=15,
         | 
| 152 | 
            +
                net=None,
         | 
| 153 | 
            +
                fp16=False,
         | 
| 154 | 
            +
            ):
         | 
| 155 | 
            +
                result = set_result()
         | 
| 156 | 
            +
                if os.path.isfile(os.path.join("json_file", "dfdc_files.json")):
         | 
| 157 | 
            +
                    with open(os.path.join("json_file", "dfdc_files.json")) as data_file:
         | 
| 158 | 
            +
                        dfdc_data = json.load(data_file)
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                if os.path.isfile(os.path.join(root_dir, "metadata.json")):
         | 
| 161 | 
            +
                    with open(os.path.join(root_dir, "metadata.json")) as data_file:
         | 
| 162 | 
            +
                        dfdc_meta = json.load(data_file)
         | 
| 163 | 
            +
                model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
         | 
| 164 | 
            +
                count = 0
         | 
| 165 | 
            +
                accuracy = 0
         | 
| 166 | 
            +
                for dfdc in dfdc_data:
         | 
| 167 | 
            +
                    dfdc_file = os.path.join(root_dir, dfdc)
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    try:
         | 
| 170 | 
            +
                        if is_video(dfdc_file):
         | 
| 171 | 
            +
                            result, accuracy, count, _ = predict(
         | 
| 172 | 
            +
                                dfdc_file,
         | 
| 173 | 
            +
                                model,
         | 
| 174 | 
            +
                                fp16,
         | 
| 175 | 
            +
                                result,
         | 
| 176 | 
            +
                                num_frames,
         | 
| 177 | 
            +
                                net,
         | 
| 178 | 
            +
                                "dfdc",
         | 
| 179 | 
            +
                                count,
         | 
| 180 | 
            +
                                accuracy,
         | 
| 181 | 
            +
                                dfdc_meta[dfdc]["label"],
         | 
| 182 | 
            +
                            )
         | 
| 183 | 
            +
                        else:
         | 
| 184 | 
            +
                            print(f"Invalid video file: {dfdc_file}. Please provide a valid video file.")
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    except Exception as e:
         | 
| 187 | 
            +
                        print(f"An error occurred: {str(e)}")
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                return result
         | 
| 190 | 
            +
             | 
| 191 | 
            +
             | 
| 192 | 
            +
            def celeb(ed_weight, vae_weight, root_dir="Celeb-DF-v2", dataset=None, num_frames=15, net=None, fp16=False):
         | 
| 193 | 
            +
                with open(os.path.join("json_file", "celeb_test.json"), "r") as f:
         | 
| 194 | 
            +
                    cfl = json.load(f)
         | 
| 195 | 
            +
                result = set_result()
         | 
| 196 | 
            +
                ky = ["Celeb-real", "Celeb-synthesis"]
         | 
| 197 | 
            +
                count = 0
         | 
| 198 | 
            +
                accuracy = 0
         | 
| 199 | 
            +
                model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                for ck in cfl:
         | 
| 202 | 
            +
                    ck_ = ck.split("/")
         | 
| 203 | 
            +
                    klass = ck_[0]
         | 
| 204 | 
            +
                    filename = ck_[1]
         | 
| 205 | 
            +
                    correct_label = "FAKE" if klass == "Celeb-synthesis" else "REAL"
         | 
| 206 | 
            +
                    vid = os.path.join(root_dir, ck)
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    try:
         | 
| 209 | 
            +
                        if is_video(vid):
         | 
| 210 | 
            +
                            result, accuracy, count, _ = predict(
         | 
| 211 | 
            +
                                vid,
         | 
| 212 | 
            +
                                model,
         | 
| 213 | 
            +
                                fp16,
         | 
| 214 | 
            +
                                result,
         | 
| 215 | 
            +
                                num_frames,
         | 
| 216 | 
            +
                                net,
         | 
| 217 | 
            +
                                klass,
         | 
| 218 | 
            +
                                count,
         | 
| 219 | 
            +
                                accuracy,
         | 
| 220 | 
            +
                                correct_label,
         | 
| 221 | 
            +
                            )
         | 
| 222 | 
            +
                        else:
         | 
| 223 | 
            +
                            print(f"Invalid video file: {vid}. Please provide a valid video file.")
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                    except Exception as e:
         | 
| 226 | 
            +
                        print(f"An error occurred x: {str(e)}")
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                return result
         | 
| 229 | 
            +
             | 
| 230 | 
            +
             | 
| 231 | 
            +
            def predict(
         | 
| 232 | 
            +
                vid,
         | 
| 233 | 
            +
                model,
         | 
| 234 | 
            +
                fp16,
         | 
| 235 | 
            +
                result,
         | 
| 236 | 
            +
                num_frames,
         | 
| 237 | 
            +
                net,
         | 
| 238 | 
            +
                klass,
         | 
| 239 | 
            +
                count=0,
         | 
| 240 | 
            +
                accuracy=-1,
         | 
| 241 | 
            +
                correct_label="unknown",
         | 
| 242 | 
            +
                compression=None,
         | 
| 243 | 
            +
            ):
         | 
| 244 | 
            +
                count += 1
         | 
| 245 | 
            +
                print(f"\n\n{str(count)} Loading... {vid}")
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                df = df_face(vid, num_frames, net)  # extract face from the frames
         | 
| 248 | 
            +
                if fp16:
         | 
| 249 | 
            +
                    df.half()
         | 
| 250 | 
            +
                y, y_val = (
         | 
| 251 | 
            +
                    pred_vid(df, model)
         | 
| 252 | 
            +
                    if len(df) >= 1
         | 
| 253 | 
            +
                    else (torch.tensor(0).item(), torch.tensor(0.5).item())
         | 
| 254 | 
            +
                )
         | 
| 255 | 
            +
                result = store_result(
         | 
| 256 | 
            +
                    result, os.path.basename(vid), y, y_val, klass, correct_label, compression
         | 
| 257 | 
            +
                )
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                if accuracy > -1:
         | 
| 260 | 
            +
                    if correct_label == real_or_fake(y):
         | 
| 261 | 
            +
                        accuracy += 1
         | 
| 262 | 
            +
                    print(
         | 
| 263 | 
            +
                        f"\nPrediction: {y_val} {real_or_fake(y)} \t\t {accuracy}/{count} {accuracy/count}"
         | 
| 264 | 
            +
                    )
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                return result, accuracy, count, [y, y_val]
         | 
| 267 | 
            +
             | 
| 268 | 
            +
             | 
| 269 | 
            +
            def gen_parser():
         | 
| 270 | 
            +
                parser = argparse.ArgumentParser("GenConViT prediction")
         | 
| 271 | 
            +
                parser.add_argument("--p", type=str, help="video or image path")
         | 
| 272 | 
            +
                parser.add_argument(
         | 
| 273 | 
            +
                    "--f", type=int, help="number of frames to process for prediction"
         | 
| 274 | 
            +
                )
         | 
| 275 | 
            +
                parser.add_argument(
         | 
| 276 | 
            +
                    "--d", type=str, help="dataset type, dfdc, faceforensics, timit, celeb"
         | 
| 277 | 
            +
                )
         | 
| 278 | 
            +
                parser.add_argument(
         | 
| 279 | 
            +
                    "--s", help="model size type: tiny, large.",
         | 
| 280 | 
            +
                )
         | 
| 281 | 
            +
                parser.add_argument(
         | 
| 282 | 
            +
                    "--e", nargs='?', const='genconvit_ed_inference', default='genconvit_ed_inference', help="weight for ed.",
         | 
| 283 | 
            +
                )
         | 
| 284 | 
            +
                parser.add_argument(
         | 
| 285 | 
            +
                    "--v", '--value', nargs='?', const='genconvit_vae_inference', default='genconvit_vae_inference', help="weight for vae.",
         | 
| 286 | 
            +
                )
         | 
| 287 | 
            +
                
         | 
| 288 | 
            +
                parser.add_argument("--fp16", type=str, help="half precision support")
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                args = parser.parse_args()
         | 
| 291 | 
            +
                path = args.p
         | 
| 292 | 
            +
                num_frames = args.f if args.f else 15
         | 
| 293 | 
            +
                dataset = args.d if args.d else "other"
         | 
| 294 | 
            +
                fp16 = True if args.fp16 else False
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                net = 'genconvit'
         | 
| 297 | 
            +
                ed_weight = 'genconvit_ed_inference'
         | 
| 298 | 
            +
                vae_weight = 'genconvit_vae_inference'
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                if args.e and args.v:
         | 
| 301 | 
            +
                    ed_weight = args.e
         | 
| 302 | 
            +
                    vae_weight = args.v
         | 
| 303 | 
            +
                elif args.e:
         | 
| 304 | 
            +
                    net = 'ed'
         | 
| 305 | 
            +
                    ed_weight = args.e
         | 
| 306 | 
            +
                elif args.v:
         | 
| 307 | 
            +
                    net = 'vae'
         | 
| 308 | 
            +
                    vae_weight = args.v
         | 
| 309 | 
            +
                
         | 
| 310 | 
            +
                    
         | 
| 311 | 
            +
                print(f'\nUsing {net}\n')  
         | 
| 312 | 
            +
                
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                if args.s:
         | 
| 315 | 
            +
                    if args.s in ['tiny', 'large']:
         | 
| 316 | 
            +
                        config["model"]["backbone"] = f"convnext_{args.s}"
         | 
| 317 | 
            +
                        config["model"]["embedder"] = f"swin_{args.s}_patch4_window7_224"
         | 
| 318 | 
            +
                        config["model"]["type"] = args.s
         | 
| 319 | 
            +
                
         | 
| 320 | 
            +
                return path, dataset, num_frames, net, fp16, ed_weight, vae_weight
         | 
| 321 | 
            +
             | 
| 322 | 
            +
             | 
| 323 | 
            +
            def main():
         | 
| 324 | 
            +
                start_time = perf_counter()
         | 
| 325 | 
            +
                path, dataset, num_frames, net, fp16, ed_weight, vae_weight = gen_parser()
         | 
| 326 | 
            +
                result = (
         | 
| 327 | 
            +
                    globals()[dataset](ed_weight, vae_weight, path, dataset, num_frames, net, fp16)
         | 
| 328 | 
            +
                    if dataset in ["dfdc", "faceforensics", "timit", "celeb"]
         | 
| 329 | 
            +
                    else vids(ed_weight, vae_weight, path, dataset, num_frames, net, fp16)
         | 
| 330 | 
            +
                )
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                curr_time = datetime.now().strftime("%B_%d_%Y_%H_%M_%S")
         | 
| 333 | 
            +
                file_path = os.path.join("result", f"prediction_{dataset}_{net}_{curr_time}.json")
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                with open(file_path, "w") as f:
         | 
| 336 | 
            +
                    json.dump(result, f)
         | 
| 337 | 
            +
                end_time = perf_counter()
         | 
| 338 | 
            +
                print("\n\n--- %s seconds ---" % (end_time - start_time))
         | 
| 339 | 
            +
             | 
| 340 | 
            +
             | 
| 341 | 
            +
            if __name__ == "__main__":
         | 
| 342 | 
            +
                main()
         |