Spaces:
Running
Running
| from abc import abstractmethod | |
| from typing import Any, Tuple | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| class AbstractRegularizer(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
| raise NotImplementedError() | |
| def get_trainable_parameters(self) -> Any: | |
| raise NotImplementedError() | |
| class IdentityRegularizer(AbstractRegularizer): | |
| def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
| return z, dict() | |
| def get_trainable_parameters(self) -> Any: | |
| yield from () | |
| def measure_perplexity( | |
| predicted_indices: torch.Tensor, num_centroids: int | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py | |
| # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally | |
| encodings = ( | |
| F.one_hot(predicted_indices, num_centroids).float().reshape(-1, num_centroids) | |
| ) | |
| avg_probs = encodings.mean(0) | |
| perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() | |
| cluster_use = torch.sum(avg_probs > 0) | |
| return perplexity, cluster_use | |