Spaces:
Runtime error
Runtime error
tomsoderlund
commited on
Commit
·
374bb44
1
Parent(s):
7180e60
paraphrase_text
Browse files- app.py +26 -5
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,19 +1,40 @@
|
|
1 |
import gradio
|
2 |
-
|
|
|
3 |
|
4 |
-
def
|
5 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
6 |
short_text = text[:1024]
|
7 |
summary = summarizer(short_text, max_length, min_length, do_sample=False)
|
8 |
print("** summary", summary)
|
9 |
return summary[0]["summary_text"]
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
gradio_interface = gradio.Interface(
|
12 |
-
fn=
|
13 |
inputs=[
|
14 |
"text",
|
15 |
-
gradio.Slider(5, 200, value=30),
|
16 |
-
gradio.Slider(5, 500, value=130)
|
17 |
],
|
18 |
outputs="text",
|
19 |
examples=[
|
|
|
1 |
import gradio
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
+
def shorten_text(text, min_length, max_length):
|
6 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
7 |
short_text = text[:1024]
|
8 |
summary = summarizer(short_text, max_length, min_length, do_sample=False)
|
9 |
print("** summary", summary)
|
10 |
return summary[0]["summary_text"]
|
11 |
|
12 |
+
def paraphrase_text(text, min_length, max_length):
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
text_instruction = "paraphrase: " + text + " </s>"
|
17 |
+
encoding = tokenizer.encode_plus(text_instruction, padding="longest", return_tensors="pt")
|
18 |
+
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
19 |
+
outputs = model.generate(
|
20 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
21 |
+
max_length=max_length,
|
22 |
+
do_sample=True,
|
23 |
+
top_k=120,
|
24 |
+
top_p=0.95,
|
25 |
+
early_stopping=True,
|
26 |
+
num_return_sequences=5
|
27 |
+
)
|
28 |
+
line = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
29 |
+
print("** outputs", len(outputs), line)
|
30 |
+
return line
|
31 |
+
|
32 |
gradio_interface = gradio.Interface(
|
33 |
+
fn=paraphrase_text,
|
34 |
inputs=[
|
35 |
"text",
|
36 |
+
gradio.Slider(5, 200, value=30, label="Min length"),
|
37 |
+
gradio.Slider(5, 500, value=130, label="Max length")
|
38 |
],
|
39 |
outputs="text",
|
40 |
examples=[
|
requirements.txt
CHANGED
@@ -102,6 +102,7 @@ Pillow==9.2.0
|
|
102 |
preshed==3.0.8
|
103 |
prometheus-client==0.15.0
|
104 |
prompt-toolkit==3.0.31
|
|
|
105 |
psutil==5.9.3
|
106 |
psycopg2==2.9.5
|
107 |
ptyprocess==0.7.0
|
|
|
102 |
preshed==3.0.8
|
103 |
prometheus-client==0.15.0
|
104 |
prompt-toolkit==3.0.31
|
105 |
+
protobuf==3.20.0
|
106 |
psutil==5.9.3
|
107 |
psycopg2==2.9.5
|
108 |
ptyprocess==0.7.0
|