Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
r""" | |
Basic training script for PyTorch | |
""" | |
# Set up custom environment before nearly anything else is imported | |
# NOTE: this should be the first import (no not reorder) | |
from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip | |
import argparse | |
import os | |
import torch | |
from maskrcnn_benchmark.config import cfg | |
from maskrcnn_benchmark.data import make_data_loader | |
from maskrcnn_benchmark.solver import make_lr_scheduler | |
from maskrcnn_benchmark.solver import make_optimizer | |
from maskrcnn_benchmark.engine.trainer import do_train | |
from maskrcnn_benchmark.modeling.detector import build_detection_model | |
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer | |
from maskrcnn_benchmark.utils.collect_env import collect_env_info | |
from maskrcnn_benchmark.utils.comm import synchronize, get_rank | |
from maskrcnn_benchmark.utils.imports import import_file | |
from maskrcnn_benchmark.utils.logging import setup_logger, Logger | |
from maskrcnn_benchmark.utils.miscellaneous import mkdir | |
# See if we can use apex.DistributedDataParallel instead of the torch default, | |
# and enable mixed-precision via apex.amp | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError('Use APEX for multi-precision via apex.amp') | |
def train(cfg, local_rank, distributed): | |
model = build_detection_model(cfg) | |
device = torch.device(cfg.MODEL.DEVICE) | |
model.to(device) | |
optimizer = make_optimizer(cfg, model) | |
scheduler = make_lr_scheduler(cfg, optimizer) | |
# Initialize mixed-precision training | |
use_mixed_precision = cfg.DTYPE == "float16" | |
amp_opt_level = 'O1' if use_mixed_precision else 'O0' | |
model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level) | |
if distributed: | |
model = torch.nn.parallel.DistributedDataParallel( | |
model, device_ids=[local_rank], output_device=local_rank, | |
# this should be removed if we update BatchNorm stats | |
broadcast_buffers=False, | |
# find_unused_parameters=True | |
) | |
arguments = {} | |
arguments["iteration"] = 0 | |
output_dir = cfg.OUTPUT_DIR | |
save_to_disk = get_rank() == 0 | |
checkpointer = DetectronCheckpointer( | |
cfg, model, optimizer, scheduler, output_dir, save_to_disk | |
) | |
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT, resume=cfg.SOLVER.RESUME) | |
if cfg.SOLVER.RESUME: | |
arguments.update(extra_checkpoint_data) | |
data_loader = make_data_loader( | |
cfg, | |
is_train=True, | |
is_distributed=distributed, | |
start_iter=arguments["iteration"], | |
) | |
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD | |
tb_logger = Logger(cfg.OUTPUT_DIR, local_rank) | |
do_train( | |
model, | |
data_loader, | |
optimizer, | |
scheduler, | |
checkpointer, | |
device, | |
checkpoint_period, | |
arguments, | |
tb_logger, | |
cfg, | |
local_rank, | |
) | |
return model | |
def main(): | |
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training") | |
parser.add_argument( | |
"--config-file", | |
default="", | |
metavar="FILE", | |
help="path to config file", | |
type=str, | |
) | |
parser.add_argument("--local_rank", type=int, default=0) | |
parser.add_argument( | |
"--skip-test", | |
dest="skip_test", | |
help="Do not test the final model", | |
action="store_true", | |
) | |
parser.add_argument( | |
"opts", | |
help="Modify config options using the command-line", | |
default=None, | |
nargs=argparse.REMAINDER, | |
) | |
args = parser.parse_args() | |
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 | |
args.distributed = num_gpus > 1 | |
if args.distributed: | |
torch.cuda.set_device(args.local_rank) | |
torch.distributed.init_process_group( | |
backend="nccl", init_method="env://" | |
) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.freeze() | |
output_dir = cfg.OUTPUT_DIR | |
if output_dir: | |
mkdir(output_dir) | |
local_rank = get_rank() | |
logger = setup_logger("maskrcnn_benchmark", output_dir, local_rank) | |
if local_rank == 0: | |
logger.info("Using {} GPUs".format(num_gpus)) | |
logger.info(args) | |
logger.info("Collecting env info (might take some time)") | |
logger.info("\n" + collect_env_info()) | |
logger.info("Loaded configuration file {}".format(args.config_file)) | |
with open(args.config_file, "r") as cf: | |
config_str = "\n" + cf.read() | |
logger.info(config_str) | |
logger.info("Running with config:\n{}".format(cfg)) | |
model = train(cfg, args.local_rank, args.distributed) | |
if __name__ == "__main__": | |
main() | |