3v324v23's picture
add
c310e19
raw
history blame
24.6 kB
# # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# """
# Variant of the resnet module that takes cfg as an argument.
# Example usage. Strings may be specified in the config file.
# model = ResNet(
# "StemWithFixedBatchNorm",
# "BottleneckWithFixedBatchNorm",
# "ResNet50StagesTo4",
# )
# Custom implementations may be written in user code and hooked in via the
# `register_*` functions.
# """
# from collections import namedtuple
# import torch
# import torch.nn.functional as F
# from torch import nn
# from maskrcnn_benchmark.layers import FrozenBatchNorm2d
# from maskrcnn_benchmark.layers import Conv2d
# # ResNet stage specification
# StageSpec = namedtuple(
# "StageSpec",
# [
# "index", # Index of the stage, eg 1, 2, ..,. 5
# "block_count", # Numer of residual blocks in the stage
# "return_features", # True => return the last feature map from this stage
# ],
# )
# # -----------------------------------------------------------------------------
# # Standard ResNet models
# # -----------------------------------------------------------------------------
# # ResNet-50 (including all stages)
# ResNet50StagesTo5 = (
# StageSpec(index=i, block_count=c, return_features=r)
# for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 6, False), (4, 3, True))
# )
# # ResNet-50 up to stage 4 (excludes stage 5)
# ResNet50StagesTo4 = (
# StageSpec(index=i, block_count=c, return_features=r)
# for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 6, True))
# )
# # ResNet-50-FPN (including all stages)
# ResNet50FPNStagesTo5 = (
# StageSpec(index=i, block_count=c, return_features=r)
# for (i, c, r) in ((1, 3, True), (2, 4, True), (3, 6, True), (4, 3, True))
# )
# # ResNet-101-FPN (including all stages)
# ResNet101FPNStagesTo5 = (
# StageSpec(index=i, block_count=c, return_features=r)
# for (i, c, r) in ((1, 3, True), (2, 4, True), (3, 23, True), (4, 3, True))
# )
# class ResNet(nn.Module):
# def __init__(self, cfg):
# super(ResNet, self).__init__()
# # If we want to use the cfg in forward(), then we should make a copy
# # of it and store it for later use:
# # self.cfg = cfg.clone()
# # Translate string names to implementations
# stem_module = _STEM_MODULES[cfg.MODEL.RESNETS.STEM_FUNC]
# stage_specs = _STAGE_SPECS[cfg.MODEL.BACKBONE.CONV_BODY]
# transformation_module = _TRANSFORMATION_MODULES[cfg.MODEL.RESNETS.TRANS_FUNC]
# # Construct the stem module
# self.stem = stem_module(cfg)
# # Constuct the specified ResNet stages
# num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
# width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
# in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# stage2_bottleneck_channels = num_groups * width_per_group
# stage2_out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
# self.stages = []
# self.return_features = {}
# for stage_spec in stage_specs:
# name = "layer" + str(stage_spec.index)
# stage2_relative_factor = 2 ** (stage_spec.index - 1)
# bottleneck_channels = stage2_bottleneck_channels * stage2_relative_factor
# out_channels = stage2_out_channels * stage2_relative_factor
# module = _make_stage(
# transformation_module,
# in_channels,
# bottleneck_channels,
# out_channels,
# stage_spec.block_count,
# num_groups,
# cfg.MODEL.RESNETS.STRIDE_IN_1X1,
# first_stride=int(stage_spec.index > 1) + 1,
# )
# in_channels = out_channels
# self.add_module(name, module)
# self.stages.append(name)
# self.return_features[name] = stage_spec.return_features
# # Optionally freeze (requires_grad=False) parts of the backbone
# self._freeze_backbone(cfg.MODEL.BACKBONE.FREEZE_CONV_BODY_AT)
# def _freeze_backbone(self, freeze_at):
# for stage_index in range(freeze_at):
# if stage_index == 0:
# m = self.stem # stage 0 is the stem
# else:
# m = getattr(self, "layer" + str(stage_index))
# for p in m.parameters():
# p.requires_grad = False
# def forward(self, x):
# outputs = []
# x = self.stem(x)
# for stage_name in self.stages:
# x = getattr(self, stage_name)(x)
# if self.return_features[stage_name]:
# outputs.append(x)
# return outputs
# class ResNetHead(nn.Module):
# def __init__(
# self,
# block_module,
# stages,
# num_groups=1,
# width_per_group=64,
# stride_in_1x1=True,
# stride_init=None,
# res2_out_channels=256,
# ):
# super(ResNetHead, self).__init__()
# stage2_relative_factor = 2 ** (stages[0].index - 1)
# stage2_bottleneck_channels = num_groups * width_per_group
# out_channels = res2_out_channels * stage2_relative_factor
# in_channels = out_channels // 2
# bottleneck_channels = stage2_bottleneck_channels * stage2_relative_factor
# block_module = _TRANSFORMATION_MODULES[block_module]
# self.stages = []
# stride = stride_init
# for stage in stages:
# name = "layer" + str(stage.index)
# if not stride:
# stride = int(stage.index > 1) + 1
# module = _make_stage(
# block_module,
# in_channels,
# bottleneck_channels,
# out_channels,
# stage.block_count,
# num_groups,
# stride_in_1x1,
# first_stride=stride,
# )
# stride = None
# self.add_module(name, module)
# self.stages.append(name)
# def forward(self, x):
# for stage in self.stages:
# x = getattr(self, stage)(x)
# return x
# def _make_stage(
# transformation_module,
# in_channels,
# bottleneck_channels,
# out_channels,
# block_count,
# num_groups,
# stride_in_1x1,
# first_stride,
# ):
# blocks = []
# stride = first_stride
# for _ in range(block_count):
# blocks.append(
# transformation_module(
# in_channels,
# bottleneck_channels,
# out_channels,
# num_groups,
# stride_in_1x1,
# stride,
# )
# )
# stride = 1
# in_channels = out_channels
# return nn.Sequential(*blocks)
# class BottleneckWithFixedBatchNorm(nn.Module):
# def __init__(
# self,
# in_channels,
# bottleneck_channels,
# out_channels,
# num_groups=1,
# stride_in_1x1=True,
# stride=1,
# ):
# super(BottleneckWithFixedBatchNorm, self).__init__()
# self.downsample = None
# if in_channels != out_channels:
# self.downsample = nn.Sequential(
# Conv2d(
# in_channels, out_channels, kernel_size=1, stride=stride, bias=False
# ),
# FrozenBatchNorm2d(out_channels),
# )
# # The original MSRA ResNet models have stride in the first 1x1 conv
# # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
# # stride in the 3x3 conv
# stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
# self.conv1 = Conv2d(
# in_channels,
# bottleneck_channels,
# kernel_size=1,
# stride=stride_1x1,
# bias=False,
# )
# self.bn1 = FrozenBatchNorm2d(bottleneck_channels)
# # TODO: specify init for the above
# self.conv2 = Conv2d(
# bottleneck_channels,
# bottleneck_channels,
# kernel_size=3,
# stride=stride_3x3,
# padding=1,
# bias=False,
# groups=num_groups,
# )
# self.bn2 = FrozenBatchNorm2d(bottleneck_channels)
# self.conv3 = Conv2d(
# bottleneck_channels, out_channels, kernel_size=1, bias=False
# )
# self.bn3 = FrozenBatchNorm2d(out_channels)
# def forward(self, x):
# residual = x
# out = self.conv1(x)
# out = self.bn1(out)
# out = F.relu_(out)
# out = self.conv2(out)
# out = self.bn2(out)
# out = F.relu_(out)
# out0 = self.conv3(out)
# out = self.bn3(out0)
# if self.downsample is not None:
# residual = self.downsample(x)
# out += residual
# out = F.relu_(out)
# return out
# class StemWithFixedBatchNorm(nn.Module):
# def __init__(self, cfg):
# super(StemWithFixedBatchNorm, self).__init__()
# out_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# self.conv1 = Conv2d(
# 3, out_channels, kernel_size=7, stride=2, padding=3, bias=False
# )
# self.bn1 = FrozenBatchNorm2d(out_channels)
# def forward(self, x):
# x = self.conv1(x)
# x = self.bn1(x)
# x = F.relu_(x)
# x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
# return x
# _TRANSFORMATION_MODULES = {"BottleneckWithFixedBatchNorm": BottleneckWithFixedBatchNorm}
# _STEM_MODULES = {"StemWithFixedBatchNorm": StemWithFixedBatchNorm}
# _STAGE_SPECS = {
# "R-50-C4": ResNet50StagesTo4,
# "R-50-C5": ResNet50StagesTo5,
# "R-50-FPN": ResNet50FPNStagesTo5,
# "R-101-FPN": ResNet101FPNStagesTo5,
# }
# def register_transformation_module(module_name, module):
# _register_generic(_TRANSFORMATION_MODULES, module_name, module)
# def register_stem_module(module_name, module):
# _register_generic(_STEM_MODULES, module_name, module)
# def register_stage_spec(stage_spec_name, stage_spec):
# _register_generic(_STAGE_SPECS, stage_spec_name, stage_spec)
# def _register_generic(module_dict, module_name, module):
# assert module_name not in module_dict
# module_dict[module_name] = module
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""
Variant of the resnet module that takes cfg as an argument.
Example usage. Strings may be specified in the config file.
model = ResNet(
"StemWithFixedBatchNorm",
"BottleneckWithFixedBatchNorm",
"ResNet50StagesTo4",
)
OR:
model = ResNet(
"StemWithGN",
"BottleneckWithGN",
"ResNet50StagesTo4",
)
Custom implementations may be written in user code and hooked in via the
`register_*` functions.
"""
from collections import namedtuple
import torch
import torch.nn.functional as F
from torch import nn
from maskrcnn_benchmark.layers import FrozenBatchNorm2d
from maskrcnn_benchmark.layers import Conv2d
from maskrcnn_benchmark.layers import DFConv2d
from maskrcnn_benchmark.modeling.make_layers import group_norm
from maskrcnn_benchmark.utils.registry import Registry
# ResNet stage specification
StageSpec = namedtuple(
"StageSpec",
[
"index", # Index of the stage, eg 1, 2, ..,. 5
"block_count", # Number of residual blocks in the stage
"return_features", # True => return the last feature map from this stage
],
)
# -----------------------------------------------------------------------------
# Standard ResNet models
# -----------------------------------------------------------------------------
# ResNet-50 (including all stages)
ResNet50StagesTo5 = tuple(
StageSpec(index=i, block_count=c, return_features=r)
for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 6, False), (4, 3, True))
)
# ResNet-50 up to stage 4 (excludes stage 5)
ResNet50StagesTo4 = tuple(
StageSpec(index=i, block_count=c, return_features=r)
for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 6, True))
)
# ResNet-101 (including all stages)
ResNet101StagesTo5 = tuple(
StageSpec(index=i, block_count=c, return_features=r)
for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 23, False), (4, 3, True))
)
# ResNet-101 up to stage 4 (excludes stage 5)
ResNet101StagesTo4 = tuple(
StageSpec(index=i, block_count=c, return_features=r)
for (i, c, r) in ((1, 3, False), (2, 4, False), (3, 23, True))
)
# ResNet-50-FPN (including all stages)
ResNet50FPNStagesTo5 = tuple(
StageSpec(index=i, block_count=c, return_features=r)
for (i, c, r) in ((1, 3, True), (2, 4, True), (3, 6, True), (4, 3, True))
)
# ResNet-101-FPN (including all stages)
ResNet101FPNStagesTo5 = tuple(
StageSpec(index=i, block_count=c, return_features=r)
for (i, c, r) in ((1, 3, True), (2, 4, True), (3, 23, True), (4, 3, True))
)
# ResNet-152-FPN (including all stages)
ResNet152FPNStagesTo5 = tuple(
StageSpec(index=i, block_count=c, return_features=r)
for (i, c, r) in ((1, 3, True), (2, 8, True), (3, 36, True), (4, 3, True))
)
class ResNet(nn.Module):
def __init__(self, cfg):
super(ResNet, self).__init__()
# If we want to use the cfg in forward(), then we should make a copy
# of it and store it for later use:
# self.cfg = cfg.clone()
# Translate string names to implementations
stem_module = _STEM_MODULES[cfg.MODEL.RESNETS.STEM_FUNC]
stage_specs = _STAGE_SPECS[cfg.MODEL.BACKBONE.CONV_BODY]
transformation_module = _TRANSFORMATION_MODULES[cfg.MODEL.RESNETS.TRANS_FUNC]
# Construct the stem module
self.stem = stem_module(cfg)
# Constuct the specified ResNet stages
num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
stage2_bottleneck_channels = num_groups * width_per_group
stage2_out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
self.stages = []
self.return_features = {}
for stage_spec in stage_specs:
name = "layer" + str(stage_spec.index)
stage2_relative_factor = 2 ** (stage_spec.index - 1)
bottleneck_channels = stage2_bottleneck_channels * stage2_relative_factor
out_channels = stage2_out_channels * stage2_relative_factor
stage_with_dcn = cfg.MODEL.RESNETS.STAGE_WITH_DCN[stage_spec.index -1]
module = _make_stage(
transformation_module,
in_channels,
bottleneck_channels,
out_channels,
stage_spec.block_count,
num_groups,
cfg.MODEL.RESNETS.STRIDE_IN_1X1,
first_stride=int(stage_spec.index > 1) + 1,
dcn_config={
"stage_with_dcn": stage_with_dcn,
"with_modulated_dcn": cfg.MODEL.RESNETS.WITH_MODULATED_DCN,
"deformable_groups": cfg.MODEL.RESNETS.DEFORMABLE_GROUPS,
}
)
in_channels = out_channels
self.add_module(name, module)
self.stages.append(name)
self.return_features[name] = stage_spec.return_features
# Optionally freeze (requires_grad=False) parts of the backbone
self._freeze_backbone(cfg.MODEL.BACKBONE.FREEZE_CONV_BODY_AT)
def _freeze_backbone(self, freeze_at):
if freeze_at < 0:
return
for stage_index in range(freeze_at):
if stage_index == 0:
m = self.stem # stage 0 is the stem
else:
m = getattr(self, "layer" + str(stage_index))
for p in m.parameters():
p.requires_grad = False
def forward(self, x):
outputs = []
x = self.stem(x)
for stage_name in self.stages:
x = getattr(self, stage_name)(x)
if self.return_features[stage_name]:
outputs.append(x)
return outputs
class ResNetHead(nn.Module):
def __init__(
self,
block_module,
stages,
num_groups=1,
width_per_group=64,
stride_in_1x1=True,
stride_init=None,
res2_out_channels=256,
dilation=1,
dcn_config={}
):
super(ResNetHead, self).__init__()
stage2_relative_factor = 2 ** (stages[0].index - 1)
stage2_bottleneck_channels = num_groups * width_per_group
out_channels = res2_out_channels * stage2_relative_factor
in_channels = out_channels // 2
bottleneck_channels = stage2_bottleneck_channels * stage2_relative_factor
block_module = _TRANSFORMATION_MODULES[block_module]
self.stages = []
stride = stride_init
for stage in stages:
name = "layer" + str(stage.index)
if not stride:
stride = int(stage.index > 1) + 1
module = _make_stage(
block_module,
in_channels,
bottleneck_channels,
out_channels,
stage.block_count,
num_groups,
stride_in_1x1,
first_stride=stride,
dilation=dilation,
dcn_config=dcn_config
)
stride = None
self.add_module(name, module)
self.stages.append(name)
self.out_channels = out_channels
def forward(self, x):
for stage in self.stages:
x = getattr(self, stage)(x)
return x
def _make_stage(
transformation_module,
in_channels,
bottleneck_channels,
out_channels,
block_count,
num_groups,
stride_in_1x1,
first_stride,
dilation=1,
dcn_config={}
):
blocks = []
stride = first_stride
for _ in range(block_count):
blocks.append(
transformation_module(
in_channels,
bottleneck_channels,
out_channels,
num_groups,
stride_in_1x1,
stride,
dilation=dilation,
dcn_config=dcn_config
)
)
stride = 1
in_channels = out_channels
return nn.Sequential(*blocks)
class Bottleneck(nn.Module):
def __init__(
self,
in_channels,
bottleneck_channels,
out_channels,
num_groups,
stride_in_1x1,
stride,
dilation,
norm_func,
dcn_config
):
super(Bottleneck, self).__init__()
self.downsample = None
if in_channels != out_channels:
down_stride = stride if dilation == 1 else 1
self.downsample = nn.Sequential(
Conv2d(
in_channels, out_channels,
kernel_size=1, stride=down_stride, bias=False
),
norm_func(out_channels),
)
for modules in [self.downsample,]:
for l in modules.modules():
if isinstance(l, Conv2d):
nn.init.kaiming_uniform_(l.weight, a=1)
if dilation > 1:
stride = 1 # reset to be 1
# The original MSRA ResNet models have stride in the first 1x1 conv
# The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
# stride in the 3x3 conv
stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
self.conv1 = Conv2d(
in_channels,
bottleneck_channels,
kernel_size=1,
stride=stride_1x1,
bias=False,
)
self.bn1 = norm_func(bottleneck_channels)
# TODO: specify init for the above
with_dcn = dcn_config.get("stage_with_dcn", False)
if with_dcn:
deformable_groups = dcn_config.get("deformable_groups", 1)
with_modulated_dcn = dcn_config.get("with_modulated_dcn", False)
self.conv2 = DFConv2d(
bottleneck_channels,
bottleneck_channels,
with_modulated_dcn=with_modulated_dcn,
kernel_size=3,
stride=stride_3x3,
groups=num_groups,
dilation=dilation,
deformable_groups=deformable_groups,
bias=False
)
else:
self.conv2 = Conv2d(
bottleneck_channels,
bottleneck_channels,
kernel_size=3,
stride=stride_3x3,
padding=dilation,
bias=False,
groups=num_groups,
dilation=dilation
)
nn.init.kaiming_uniform_(self.conv2.weight, a=1)
self.bn2 = norm_func(bottleneck_channels)
self.conv3 = Conv2d(
bottleneck_channels, out_channels, kernel_size=1, bias=False
)
self.bn3 = norm_func(out_channels)
for l in [self.conv1, self.conv3,]:
nn.init.kaiming_uniform_(l.weight, a=1)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = F.relu_(out)
out = self.conv2(out)
out = self.bn2(out)
out = F.relu_(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = F.relu_(out)
return out
class BaseStem(nn.Module):
def __init__(self, cfg, norm_func):
super(BaseStem, self).__init__()
out_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
self.conv1 = Conv2d(
3, out_channels, kernel_size=7, stride=2, padding=3, bias=False
)
self.bn1 = norm_func(out_channels)
for l in [self.conv1,]:
nn.init.kaiming_uniform_(l.weight, a=1)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu_(x)
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
return x
class BottleneckWithFixedBatchNorm(Bottleneck):
def __init__(
self,
in_channels,
bottleneck_channels,
out_channels,
num_groups=1,
stride_in_1x1=True,
stride=1,
dilation=1,
dcn_config={}
):
super(BottleneckWithFixedBatchNorm, self).__init__(
in_channels=in_channels,
bottleneck_channels=bottleneck_channels,
out_channels=out_channels,
num_groups=num_groups,
stride_in_1x1=stride_in_1x1,
stride=stride,
dilation=dilation,
norm_func=FrozenBatchNorm2d,
dcn_config=dcn_config
)
class StemWithFixedBatchNorm(BaseStem):
def __init__(self, cfg):
super(StemWithFixedBatchNorm, self).__init__(
cfg, norm_func=FrozenBatchNorm2d
)
class BottleneckWithGN(Bottleneck):
def __init__(
self,
in_channels,
bottleneck_channels,
out_channels,
num_groups=1,
stride_in_1x1=True,
stride=1,
dilation=1,
dcn_config={}
):
super(BottleneckWithGN, self).__init__(
in_channels=in_channels,
bottleneck_channels=bottleneck_channels,
out_channels=out_channels,
num_groups=num_groups,
stride_in_1x1=stride_in_1x1,
stride=stride,
dilation=dilation,
norm_func=group_norm,
dcn_config=dcn_config
)
class StemWithGN(BaseStem):
def __init__(self, cfg):
super(StemWithGN, self).__init__(cfg, norm_func=group_norm)
_TRANSFORMATION_MODULES = Registry({
"BottleneckWithFixedBatchNorm": BottleneckWithFixedBatchNorm,
"BottleneckWithGN": BottleneckWithGN,
})
_STEM_MODULES = Registry({
"StemWithFixedBatchNorm": StemWithFixedBatchNorm,
"StemWithGN": StemWithGN,
})
_STAGE_SPECS = Registry({
"R-50-C4": ResNet50StagesTo4,
"R-50-C5": ResNet50StagesTo5,
"R-101-C4": ResNet101StagesTo4,
"R-101-C5": ResNet101StagesTo5,
"R-50-FPN": ResNet50FPNStagesTo5,
"R-50-FPN-RETINANET": ResNet50FPNStagesTo5,
"R-101-FPN": ResNet101FPNStagesTo5,
"R-101-FPN-RETINANET": ResNet101FPNStagesTo5,
"R-152-FPN": ResNet152FPNStagesTo5,
})