3v324v23's picture
add
c310e19
raw
history blame
24 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import datetime
import logging
import os
import pickle
import subprocess
import time
import cv2
import numpy as np
import torch
from maskrcnn_benchmark.utils.chars import char2num, get_tight_rect, getstr_grid
from PIL import Image, ImageDraw
from tqdm import tqdm
from ..utils.comm import is_main_process, scatter_gather, synchronize
import pdb
# TO DO: format output with dictionnary
def compute_on_dataset(model, data_loader, device, cfg):
model.eval()
results_dict = {}
seg_results = []
cpu_device = torch.device("cpu")
total_time = 0
for _, batch in tqdm(enumerate(data_loader)):
images, targets, image_paths = batch
images = images.to(device)
with torch.no_grad():
if cfg.MODEL.SEG_ON:
predictions, proposals, seg_results_dict = model(
images
)
seg_results.append(
[image_paths, proposals, seg_results_dict['rotated_boxes'], seg_results_dict['polygons'], seg_results_dict['preds'], seg_results_dict['scores']]
)
# if cfg.MODEL.MASK_ON and predictions is not None:
if predictions is not None:
if cfg.MODEL.CHAR_MASK_ON or cfg.SEQUENCE.SEQ_ON:
global_predictions = predictions[0]
char_predictions = predictions[1]
char_mask = char_predictions["char_mask"]
boxes = char_predictions["boxes"]
seq_words = char_predictions["seq_outputs"]
seq_scores = char_predictions["seq_scores"]
detailed_seq_scores = char_predictions["detailed_seq_scores"]
global_predictions = [o.to(cpu_device) for o in global_predictions]
results_dict.update(
{
image_paths[0]: [
global_predictions[0],
char_mask,
boxes,
seq_words,
seq_scores,
detailed_seq_scores,
]
}
)
else:
global_predictions = [o.to(cpu_device) for o in predictions]
results_dict.update(
{
image_paths[0]: [
global_predictions[0],
]
}
)
else:
predictions = model(images)
if predictions is not None:
if not (cfg.MODEL.CHAR_MASK_ON and cfg.SEQUENCE.SEQ_ON):
global_predictions = predictions
global_predictions = [o.to(cpu_device) for o in global_predictions]
results_dict.update(
{
image_paths[0]: [
global_predictions[0],
]
}
)
else:
global_predictions = predictions[0]
char_predictions = predictions[1]
if cfg.MODEL.CHAR_MASK_ON:
char_mask = char_predictions["char_mask"]
else:
char_mask = None
boxes = char_predictions["boxes"]
seq_words = char_predictions["seq_outputs"]
seq_scores = char_predictions["seq_scores"]
detailed_seq_scores = char_predictions["detailed_seq_scores"]
global_predictions = [o.to(cpu_device) for o in global_predictions]
results_dict.update(
{
image_paths[0]: [
global_predictions[0],
char_mask,
boxes,
seq_words,
seq_scores,
detailed_seq_scores,
]
}
)
return results_dict, seg_results
def polygon2rbox(polygon, image_height, image_width):
poly = np.array(polygon).reshape((-1, 2))
rect = cv2.minAreaRect(poly)
corners = cv2.boxPoints(rect)
corners = np.array(corners, dtype="int")
pts = get_tight_rect(corners, 0, 0, image_height, image_width, 1)
pts = list(map(int, pts))
return pts
def mask2polygon(mask, box, im_size, threshold=0.5, output_folder=None):
# mask 32*128
image_width, image_height = im_size[0], im_size[1]
box_h = box[3] - box[1]
box_w = box[2] - box[0]
cls_polys = (mask * 255).astype(np.uint8)
poly_map = np.array(Image.fromarray(cls_polys).resize((box_w, box_h)))
poly_map = poly_map.astype(np.float32) / 255
poly_map = cv2.GaussianBlur(poly_map, (3, 3), sigmaX=3)
ret, poly_map = cv2.threshold(poly_map, threshold, 1, cv2.THRESH_BINARY)
if "total_text" in output_folder or "cute80" in output_folder:
SE1 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
poly_map = cv2.erode(poly_map, SE1)
poly_map = cv2.dilate(poly_map, SE1)
poly_map = cv2.morphologyEx(poly_map, cv2.MORPH_CLOSE, SE1)
try:
_, contours, _ = cv2.findContours(
(poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE
)
except:
contours, _ = cv2.findContours(
(poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE
)
if len(contours) == 0:
# print(contours)
# print(len(contours))
return None
max_area = 0
max_cnt = contours[0]
for cnt in contours:
area = cv2.contourArea(cnt)
if area > max_area:
max_area = area
max_cnt = cnt
# perimeter = cv2.arcLength(max_cnt, True)
epsilon = 0.01 * cv2.arcLength(max_cnt, True)
approx = cv2.approxPolyDP(max_cnt, epsilon, True)
pts = approx.reshape((-1, 2))
pts[:, 0] = pts[:, 0] + box[0]
pts[:, 1] = pts[:, 1] + box[1]
polygon = list(pts.reshape((-1,)))
polygon = list(map(int, polygon))
if len(polygon) < 6:
return None
else:
SE1 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
poly_map = cv2.erode(poly_map, SE1)
poly_map = cv2.dilate(poly_map, SE1)
poly_map = cv2.morphologyEx(poly_map, cv2.MORPH_CLOSE, SE1)
idy, idx = np.where(poly_map == 1)
xy = np.vstack((idx, idy))
xy = np.transpose(xy)
hull = cv2.convexHull(xy, clockwise=True)
# reverse order of points.
if hull is None:
return None
hull = hull[::-1]
# find minimum area bounding box.
rect = cv2.minAreaRect(hull)
corners = cv2.boxPoints(rect)
corners = np.array(corners, dtype="int")
pts = get_tight_rect(corners, box[0], box[1], image_height, image_width, 1)
polygon = [x * 1.0 for x in pts]
polygon = list(map(int, polygon))
return polygon
def _accumulate_predictions_from_multiple_gpus(predictions_per_gpu):
all_predictions = scatter_gather(predictions_per_gpu)
if not is_main_process():
return
# merge the list of dicts
predictions = {}
for p in all_predictions:
predictions.update(p)
return predictions
def format_output(out_dir, boxes, img_name):
with open(
os.path.join(out_dir, "res_" + img_name.split(".")[0] + ".txt"), "wt"
) as res:
## char score save dir
ssur_name = os.path.join(out_dir, "res_" + img_name.split(".")[0])
for i, box in enumerate(boxes):
save_name = ssur_name + "_" + str(i) + ".pkl"
save_dict = {}
if "total_text" in out_dir or "cute80" in out_dir:
# np.save(save_name, box[-2])
save_dict["seg_char_scores"] = box[-3]
save_dict["seq_char_scores"] = box[-2]
box = (
",".join([str(x) for x in box[:4]])
+ ";"
+ ",".join([str(x) for x in box[4 : 4 + int(box[-1])]])
+ ";"
+ ",".join([str(x) for x in box[4 + int(box[-1]) : -3]])
+ ","
+ save_name
)
else:
save_dict["seg_char_scores"] = box[-2]
save_dict["seq_char_scores"] = box[-1]
np.save(save_name, box[-1])
box = ",".join([str(x) for x in box[:-2]]) + "," + save_name
with open(save_name, "wb") as f:
pickle.dump(save_dict, f, protocol=2)
res.write(box + "\n")
def format_seg_output(results_dir, rotated_boxes_this_image, polygons_this_image, scores, img_name, ratio):
height_ratio, width_ratio = ratio
with open(
os.path.join(results_dir, "res_" + img_name.split(".")[0] + ".txt"), "wt"
) as res:
if "total_text" in results_dir or "cute80" in results_dir:
for i, box in enumerate(polygons_this_image):
box = box[0]
box[0::2] = box[0::2] * width_ratio
box[1::2] = box[1::2] * height_ratio
save_dict = {}
# result = ",".join([str(int(x[0])) + ',' +str(int(x[1])) for x in box])
result = ",".join([str(int(x)) for x in box])
score = scores[i].item()
res.write(result + ',' + str(score) + "\n")
else:
for i, box in enumerate(rotated_boxes_this_image):
box[0::2] = box[0::2] * width_ratio
box[1::2] = box[1::2] * height_ratio
save_dict = {}
result = ",".join([str(int(x[0])) + ',' +str(int(x[1])) for x in box])
score = scores[i].item()
res.write(result + ',' + str(score) + "\n")
def process_char_mask(char_masks, boxes, threshold=192):
texts, rec_scores, rec_char_scores, char_polygons = [], [], [], []
for index in range(char_masks.shape[0]):
box = list(boxes[index])
box = list(map(int, box))
text, rec_score, rec_char_score, char_polygon = getstr_grid(
char_masks[index, :, :, :].copy(), box, threshold=threshold
)
texts.append(text)
rec_scores.append(rec_score)
rec_char_scores.append(rec_char_score)
char_polygons.append(char_polygon)
# segmss.append(segms)
return texts, rec_scores, rec_char_scores, char_polygons
def creat_color_map(n_class, width):
splits = int(np.ceil(np.power((n_class * 1.0), 1.0 / 3)))
maps = []
for i in range(splits):
r = int(i * width * 1.0 / (splits - 1))
for j in range(splits):
g = int(j * width * 1.0 / (splits - 1))
for k in range(splits - 1):
b = int(k * width * 1.0 / (splits - 1))
maps.append((r, g, b, 200))
return maps
def visualization(image, polygons, resize_ratio, colors, char_polygons=None, words=None):
draw = ImageDraw.Draw(image, "RGBA")
for polygon in polygons:
# draw.polygon(polygon, fill=None, outline=(0, 255, 0, 255))
# print(polygon)
polygon.append(polygon[0])
polygon.append(polygon[1])
# print(polygon)
color = '#33FF33'
draw.line(polygon, fill=color, width=5)
# if char_polygons is not None:
# for i, char_polygon in enumerate(char_polygons):
# for j, polygon in enumerate(char_polygon):
# polygon = [int(x * resize_ratio) for x in polygon]
# char = words[i][j]
# color = colors[char2num(char)]
# draw.polygon(polygon, fill=color, outline=color)
def vis_seg_map(image_path, seg_map, rotated_boxes, polygons_this_image, proposals, vis_dir):
img_name = image_path.split("/")[-1]
image = cv2.imread(image_path)
height, width, _ = image.shape
seg_map = seg_map.data.cpu().numpy()
img = Image.fromarray(image).convert("RGB")
# height_ratio = height / seg_map.shape[1]
# width_ratio = width / seg_map.shape[2]
# print('seg_map.shape:', seg_map.shape)
# print('image.shape:', image.shape)
seg_image = (
Image.fromarray((seg_map[0, :proposals.size[1], :proposals.size[0]] * 255).astype(np.uint8))
.convert("RGB")
.resize((width, height))
)
visu_image = Image.blend(seg_image, img, 0.5)
img_draw = ImageDraw.Draw(visu_image)
if "total_text" in vis_dir or "cute80" in vis_dir:
for box in polygons_this_image:
# box[:, 0] = box[:, 0]
# box[:, 1] = box[:, 1]
tuple_box = [tuple(x) for x in box[0].reshape(-1, 2).tolist()]
tuple_box.append(tuple_box[0])
img_draw.line(tuple_box, fill=(0, 255, 0), width=5)
else:
for box in rotated_boxes:
# box[:, 0] = box[:, 0]
# box[:, 1] = box[:, 1]
tuple_box = [tuple(x) for x in box.tolist()]
tuple_box.append(tuple_box[0])
img_draw.line(tuple_box, fill=(0, 255, 0), width=5)
visu_image.save(vis_dir + "/seg_" + img_name)
def prepare_results_for_evaluation(
predictions, output_folder, model_name, seg_predictions=None, vis=False, cfg=None
):
results_dir = os.path.join(output_folder, model_name + "_results")
if not os.path.isdir(results_dir):
os.mkdir(results_dir)
seg_results_dir = os.path.join(output_folder, model_name + "_seg_results")
if not os.path.isdir(seg_results_dir):
os.mkdir(seg_results_dir)
if vis:
visu_dir = os.path.join(output_folder, model_name + "_visu")
if not os.path.isdir(visu_dir):
os.mkdir(visu_dir)
seg_visu_dir = os.path.join(output_folder, model_name + "_seg_visu")
if not os.path.isdir(seg_visu_dir):
os.mkdir(seg_visu_dir)
if len(seg_predictions) > 0:
for seg_prediction in seg_predictions:
image_paths, proposals, rotated_boxes, polygons, seg_maps, seg_scores = (
seg_prediction[0],
seg_prediction[1],
seg_prediction[2],
seg_prediction[3],
seg_prediction[4],
seg_prediction[5],
)
for batch_id in range(len(image_paths)):
image_path = image_paths[batch_id]
im_name = image_path.split("/")[-1]
image = cv2.imread(image_path)
height, width, _ = image.shape
rotated_boxes_this_image = rotated_boxes[batch_id]
polygons_this_image = polygons[batch_id]
proposals_this_image = proposals[batch_id]
seg_map = seg_maps[batch_id]
seg_score = seg_scores[batch_id]
height, width, _ = image.shape
height_ratio = height / proposals_this_image.size[1]
width_ratio = width / proposals_this_image.size[0]
format_seg_output(seg_results_dir, rotated_boxes_this_image, polygons_this_image, seg_score, im_name, (height_ratio, width_ratio))
if vis:
vis_seg_map(image_path, seg_map, rotated_boxes_this_image, polygons_this_image, proposals_this_image, seg_visu_dir)
if (not cfg.MODEL.TRAIN_DETECTION_ONLY):
for image_path, prediction in predictions.items():
im_name = image_path.split("/")[-1]
if cfg.MODEL.CHAR_MASK_ON or cfg.SEQUENCE.SEQ_ON:
global_prediction, char_mask, boxes_char, seq_words, seq_scores, detailed_seq_scores = (
prediction[0],
prediction[1],
prediction[2],
prediction[3],
prediction[4],
prediction[5],
)
if char_mask is not None:
words, rec_scores, rec_char_scoress, char_polygons = process_char_mask(
char_mask, boxes_char
)
else:
global_prediction = prediction[0]
test_image_width, test_image_height = global_prediction.size
img = Image.open(image_path)
width, height = img.size
resize_ratio = float(height) / test_image_height
global_prediction = global_prediction.resize((width, height))
boxes = global_prediction.bbox.tolist()
if cfg.MODEL.ROI_BOX_HEAD.INFERENCE_USE_BOX:
scores = global_prediction.get_field("scores").tolist()
if not cfg.MODEL.SEG.USE_SEG_POLY:
masks = global_prediction.get_field("mask").cpu().numpy()
else:
masks = global_prediction.get_field("masks").get_polygons()
result_logs = []
polygons = []
for k, box in enumerate(boxes):
if box[2] - box[0] < 1 or box[3] - box[1] < 1:
continue
box = list(map(int, box))
if not cfg.MODEL.SEG.USE_SEG_POLY:
mask = masks[k, 0, :, :]
polygon = mask2polygon(
mask, box, img.size, threshold=0.5, output_folder=output_folder
)
else:
polygon = list(masks[k].get_polygons()[0].cpu().numpy())
if not ("total_text" in output_folder or "cute80" in output_folder):
polygon = polygon2rbox(polygon, height, width)
if polygon is None:
polygon = [
box[0],
box[1],
box[2],
box[1],
box[2],
box[3],
box[0],
box[3],
]
continue
polygons.append(polygon)
if cfg.MODEL.ROI_BOX_HEAD.INFERENCE_USE_BOX:
score = scores[k]
else:
score = 1.0
if cfg.MODEL.CHAR_MASK_ON or cfg.SEQUENCE.SEQ_ON:
if char_mask is None:
word = 'aaa'
rec_score = 1.0
char_score = None
else:
word = words[k]
rec_score = rec_scores[k]
char_score = rec_char_scoress[k]
seq_word = seq_words[k]
seq_char_scores = seq_scores[k]
seq_score = sum(seq_char_scores) / float(len(seq_char_scores))
detailed_seq_score = detailed_seq_scores[k]
detailed_seq_score = np.squeeze(np.array(detailed_seq_score), axis=1)
else:
word = 'aaa'
rec_score = 1.0
char_score = [1.0, 1.0, 1.0]
seq_word = 'aaa'
seq_char_scores = [1.0, 1.0, 1.0]
seq_score = 1.0
detailed_seq_score = None
if "total_text" in output_folder or "cute80" in output_folder:
result_log = (
[int(x * 1.0) for x in box[:4]]
+ polygon
+ [word]
+ [seq_word]
+ [score]
+ [rec_score]
+ [seq_score]
+ [char_score]
+ [detailed_seq_score]
+ [len(polygon)]
)
else:
result_log = (
[int(x * 1.0) for x in box[:4]]
+ polygon
+ [word]
+ [seq_word]
+ [score]
+ [rec_score]
+ [seq_score]
+ [char_score]
+ [detailed_seq_score]
)
result_logs.append(result_log)
if vis:
colors = creat_color_map(37, 255)
if cfg.MODEL.CHAR_MASK_ON:
visualization(img, polygons, resize_ratio, colors, char_polygons, words)
else:
visualization(img, polygons, resize_ratio, colors)
img.save(os.path.join(visu_dir, im_name))
format_output(results_dir, result_logs, im_name)
def inference(
model,
data_loader,
iou_types=("bbox",),
box_only=False,
device="cuda",
expected_results=(),
expected_results_sigma_tol=4,
output_folder=None,
model_name=None,
cfg=None,
):
# convert to a torch.device for efficiency
model_name = model_name.split(".")[0] + "_" + str(cfg.INPUT.MIN_SIZE_TEST)
predictions_path = os.path.join(output_folder, model_name + "_predictions.pth")
seg_predictions_path = os.path.join(
output_folder, model_name + "_seg_predictions.pth"
)
# if os.path.isfile(predictions_path) and os.path.isfile(seg_predictions_path):
if False:
predictions = torch.load(predictions_path)
seg_predictions = torch.load(seg_predictions_path)
else:
device = torch.device(device)
num_devices = (
torch.distributed.get_world_size()
if torch.distributed.is_initialized()
else 1
)
logger = logging.getLogger("maskrcnn_benchmark.inference")
dataset = data_loader.dataset
logger.info("Start evaluation on {} images".format(len(dataset)))
start_time = time.time()
predictions, seg_predictions = compute_on_dataset(
model, data_loader, device, cfg
)
# wait for all processes to complete before measuring the time
synchronize()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=total_time))
logger.info(
"Total inference time: {} ({} s / img per device, on {} devices)".format(
total_time_str, total_time * num_devices / len(dataset), num_devices
)
)
# predictions = _accumulate_predictions_from_multiple_gpus(predictions)
# if not is_main_process():
# return
if output_folder:
torch.save(predictions, predictions_path)
torch.save(seg_predictions, seg_predictions_path)
prepare_results_for_evaluation(
predictions,
output_folder,
model_name,
seg_predictions=seg_predictions,
vis=cfg.TEST.VIS,
cfg=cfg
)