3v324v23's picture
add
c310e19
raw
history blame
15.1 kB
#!/usr/bin/env python3
import numpy as np
import torch
import cv2
import pyclipper
from shapely.geometry import Polygon
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist, cat_boxlist_gt
from maskrcnn_benchmark.structures.boxlist_ops import remove_small_boxes
from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask
import random
import time
class SEGPostProcessor(torch.nn.Module):
"""
Performs post-processing on the outputs of the RPN boxes, before feeding the
proposals to the heads
"""
def __init__(
self,
top_n,
binary_thresh,
box_thresh,
min_size,
cfg,
):
"""
Arguments:
top_n (int)
binary_thresh (float)
box_thresh (float)
min_size (int)
"""
super(SEGPostProcessor, self).__init__()
self.top_n = top_n
self.binary_thresh = binary_thresh
self.box_thresh = box_thresh
self.min_size = min_size
self.cfg = cfg
def add_gt_proposals(self, proposals, targets):
"""
Arguments:
proposals: list[BoxList]
targets: list[BoxList]
"""
# Get the device we're operating on
# device = proposals[0].bbox.
if self.cfg.MODEL.SEG.USE_SEG_POLY or self.cfg.MODEL.ROI_BOX_HEAD.USE_MASKED_FEATURE or self.cfg.MODEL.ROI_MASK_HEAD.USE_MASKED_FEATURE:
gt_boxes = [target.copy_with_fields(['masks']) for target in targets]
else:
gt_boxes = [target.copy_with_fields([]) for target in targets]
# later cat of bbox requires all fields to be present for all bbox
# so we need to add a dummy for objectness that's missing
# for gt_box in gt_boxes:
# gt_box.add_field("objectness", torch.ones(len(gt_box), device=device))
proposals = [
cat_boxlist_gt([proposal, gt_box])
for proposal, gt_box in zip(proposals, gt_boxes)
]
return proposals
def aug_tensor_proposals(self, boxes):
# boxes: N * 4
boxes = boxes.float()
N = boxes.shape[0]
device = boxes.device
aug_boxes = torch.zeros((4, N, 4), device=device)
aug_boxes[0, :, :] = boxes.clone()
xmin, ymin, xmax, ymax = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
x_center = (xmin + xmax) / 2.
y_center = (ymin + ymax) / 2.
width = xmax - xmin
height = ymax - ymin
for i in range(3):
choice = random.random()
if choice < 0.5:
# shrink or expand
ratio = (torch.randn((N,), device=device) * 3 + 1) / 2.
height = height * ratio
ratio = (torch.randn((N,), device=device) * 3 + 1) / 2.
width = width * ratio
else:
move_x = width * (torch.randn((N,), device=device) * 4 - 2)
move_y = height * (torch.randn((N,), device=device) * 4 - 2)
x_center += move_x
y_center += move_y
boxes[:, 0] = x_center - width / 2
boxes[:, 2] = x_center + width / 2
boxes[:, 1] = y_center - height / 2
boxes[:, 3] = y_center + height / 2
aug_boxes[i+1, :, :] = boxes.clone()
return aug_boxes.reshape((-1, 4))
def forward_for_single_feature_map(self, pred, image_shapes):
"""
Arguments:
pred: tensor of size N, 1, H, W
"""
device = pred.device
# torch.cuda.synchronize()
# start_time = time.time()
bitmap = self.binarize(pred)
# torch.cuda.synchronize()
# end_time = time.time()
# print('binarize time:', end_time - start_time)
N, height, width = pred.shape[0], pred.shape[2], pred.shape[3]
# torch.cuda.synchronize()
# start_time = time.time()
bitmap_numpy = bitmap.cpu().numpy() # The first channel
pred_map_numpy = pred.cpu().numpy()
# torch.cuda.synchronize()
# end_time = time.time()
# print('gpu2numpy time:', end_time - start_time)
boxes_batch = []
rotated_boxes_batch = []
polygons_batch = []
scores_batch = []
# torch.cuda.synchronize()
# start_time = time.time()
for batch_index in range(N):
image_shape = image_shapes[batch_index]
boxes, scores, rotated_boxes, polygons = self.boxes_from_bitmap(
pred_map_numpy[batch_index],
bitmap_numpy[batch_index], width, height)
boxes = boxes.to(device)
if self.training and self.cfg.MODEL.SEG.AUG_PROPOSALS:
boxes = self.aug_tensor_proposals(boxes)
if boxes.shape[0] > self.top_n:
boxes = boxes[:self.top_n, :]
# _, top_index = scores.topk(self.top_n, 0, sorted=False)
# boxes = boxes[top_index, :]
# scores = scores[top_index]
# boxlist = BoxList(boxes, (width, height), mode="xyxy")
boxlist = BoxList(boxes, (image_shape[1], image_shape[0]), mode="xyxy")
if self.cfg.MODEL.SEG.USE_SEG_POLY or self.cfg.MODEL.ROI_BOX_HEAD.USE_MASKED_FEATURE or self.cfg.MODEL.ROI_MASK_HEAD.USE_MASKED_FEATURE:
masks = SegmentationMask(polygons, (image_shape[1], image_shape[0]))
boxlist.add_field('masks', masks)
boxlist = boxlist.clip_to_image(remove_empty=False)
# boxlist = remove_small_boxes(boxlist, self.min_size)
boxes_batch.append(boxlist)
rotated_boxes_batch.append(rotated_boxes)
polygons_batch.append(polygons)
scores_batch.append(scores)
# torch.cuda.synchronize()
# end_time = time.time()
# print('loop time:', end_time - start_time)
return boxes_batch, rotated_boxes_batch, polygons_batch, scores_batch
def forward(self, seg_output, image_shapes, targets=None):
"""
Arguments:
seg_output: list[tensor]
Returns:
boxlists (list[BoxList]): bounding boxes
"""
sampled_boxes = []
boxes_batch, rotated_boxes_batch, polygons_batch, scores_batch = self.forward_for_single_feature_map(seg_output, image_shapes)
if not self.training:
return boxes_batch, rotated_boxes_batch, polygons_batch, scores_batch
sampled_boxes.append(boxes_batch)
boxlists = list(zip(*sampled_boxes))
boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]
# append ground-truth bboxes to proposals
if self.training and targets is not None:
boxlists = self.add_gt_proposals(boxlists, targets)
return boxlists
# def select_over_all_levels(self, boxlists):
# num_images = len(boxlists)
# # different behavior during training and during testing:
# # during training, post_nms_top_n is over *all* the proposals combined, while
# # during testing, it is over the proposals for each image
# # TODO resolve this difference and make it consistent. It should be per image,
# # and not per batch
# if self.training:
# objectness = torch.cat(
# [boxlist.get_field("objectness") for boxlist in boxlists], dim=0
# )
# box_sizes = [len(boxlist) for boxlist in boxlists]
# post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
# _, inds_sorted = torch.topk(objectness, post_nms_top_n, dim=0, sorted=True)
# inds_mask = torch.zeros_like(objectness, dtype=torch.uint8)
# inds_mask[inds_sorted] = 1
# inds_mask = inds_mask.split(box_sizes)
# for i in range(num_images):
# boxlists[i] = boxlists[i][inds_mask[i]]
# else:
# for i in range(num_images):
# objectness = boxlists[i].get_field("objectness")
# post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
# _, inds_sorted = torch.topk(
# objectness, post_nms_top_n, dim=0, sorted=True
# )
# boxlists[i] = boxlists[i][inds_sorted]
# return boxlists
def binarize(self, pred):
if self.cfg.MODEL.SEG.USE_MULTIPLE_THRESH:
binary_maps = []
for thre in self.cfg.MODEL.SEG.MULTIPLE_THRESH:
binary_map = pred > thre
binary_maps.append(binary_map)
return torch.cat(binary_maps, dim=1)
else:
return pred > self.binary_thresh
def boxes_from_bitmap(self, pred, bitmap, dest_width, dest_height):
"""
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
"""
# assert _bitmap.size(0) == 1
# bitmap = _bitmap[0] # The first channel
pred = pred[0]
height, width = bitmap.shape[1], bitmap.shape[2]
boxes = []
scores = []
rotated_boxes = []
polygons = []
contours_all = []
for i in range(bitmap.shape[0]):
try:
_, contours, _ = cv2.findContours(
(bitmap[i] * 255).astype(np.uint8),
cv2.RETR_LIST,
cv2.CHAIN_APPROX_NONE,
)
except BaseException:
contours, _ = cv2.findContours(
(bitmap[i] * 255).astype(np.uint8),
cv2.RETR_LIST,
cv2.CHAIN_APPROX_NONE,
)
contours_all.extend(contours)
for contour in contours_all:
epsilon = 0.01 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
polygon = approx.reshape((-1, 2))
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
score = self.box_score_fast(pred, points)
if not self.training and self.box_thresh > score:
continue
if polygon.shape[0] > 2:
polygon = self.unclip(polygon, expand_ratio=self.cfg.MODEL.SEG.EXPAND_RATIO)
if len(polygon) > 1:
continue
else:
continue
# polygon = polygon.reshape(-1, 2)
polygon = polygon.reshape(-1)
box = self.unclip(points, expand_ratio=self.cfg.MODEL.SEG.BOX_EXPAND_RATIO).reshape(-1, 2)
box = np.array(box)
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height
)
min_x, min_y = min(box[:, 0]), min(box[:, 1])
max_x, max_y = max(box[:, 0]), max(box[:, 1])
horizontal_box = torch.from_numpy(np.array([min_x, min_y, max_x, max_y]))
boxes.append(horizontal_box)
scores.append(score)
rotated_box, _ = self.get_mini_boxes(box.reshape(-1, 1, 2))
rotated_box = np.array(rotated_box)
rotated_boxes.append(rotated_box)
polygons.append([polygon])
if len(boxes) == 0:
boxes = [torch.from_numpy(np.array([0, 0, 0, 0]))]
scores = [0.]
boxes = torch.stack(boxes)
scores = torch.from_numpy(np.array(scores))
return boxes, scores, rotated_boxes, polygons
def aug_proposals(self, box):
xmin, ymin, xmax, ymax = box[0], box[1], box[2], box[3]
x_center = int((xmin + xmax) / 2.)
y_center = int((ymin + ymax) / 2.)
width = xmax - xmin
height = ymax - ymin
choice = random.random()
if choice < 0.5:
# shrink or expand
ratio = (random.random() * 3 + 1) / 2.
height = height * ratio
ratio = (random.random() * 3 + 1) / 2.
width = width * ratio
else:
move_x = width * (random.random() * 4 - 2)
move_y = height * (random.random() * 4 - 2)
x_center += move_x
y_center += move_y
xmin = int(x_center - width / 2)
xmax = int(x_center + width / 2)
ymin = int(y_center - height / 2)
ymax = int(y_center + height / 2)
return [xmin, ymin, xmax, ymax]
def unclip(self, box, expand_ratio=1.5):
poly = Polygon(box)
distance = poly.area * expand_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [points[index_1], points[index_2], points[index_3], points[index_4]]
return box, min(bounding_box[1])
def box_score(self, bitmap, box):
"""
naive version of box score computation,
only for helping principle understand.
"""
mask = np.zeros_like(bitmap, dtype=np.uint8)
cv2.fillPoly(mask, box.reshape(1, 4, 2).astype(np.int32), 1)
return cv2.mean(bitmap, mask)[0]
def box_score_fast(self, bitmap, _box):
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, 4, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin : ymax + 1, xmin : xmax + 1], mask)[0]
def make_seg_postprocessor(config, is_train):
top_n = config.MODEL.SEG.TOP_N_TRAIN
if not is_train:
top_n = config.MODEL.SEG.TOP_N_TEST
binary_thresh = config.MODEL.SEG.BINARY_THRESH
box_thresh = config.MODEL.SEG.BOX_THRESH
min_size = config.MODEL.SEG.MIN_SIZE
box_selector = SEGPostProcessor(
top_n=top_n,
binary_thresh=binary_thresh,
box_thresh=box_thresh,
min_size=min_size,
cfg = config
)
return box_selector