Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import copy | |
import os | |
import os.path as osp | |
import time | |
import warnings | |
import mmcv | |
import torch | |
import torch.distributed as dist | |
from mmcv import Config, DictAction | |
from mmcv.runner import get_dist_info, init_dist, set_random_seed | |
from mmcv.utils import get_git_hash | |
from mmocr import __version__ | |
from mmocr.apis import init_random_seed, train_detector | |
from mmocr.datasets import build_dataset | |
from mmocr.models import build_detector | |
from mmocr.utils import (collect_env, get_root_logger, is_2dlist, | |
setup_multi_processes) | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Train a detector.') | |
parser.add_argument('config', help='Train config file path.') | |
parser.add_argument('--work-dir', help='The dir to save logs and models.') | |
parser.add_argument( | |
'--load-from', help='The checkpoint file to load from.') | |
parser.add_argument( | |
'--resume-from', help='The checkpoint file to resume from.') | |
parser.add_argument( | |
'--no-validate', | |
action='store_true', | |
help='Whether not to evaluate the checkpoint during training.') | |
group_gpus = parser.add_mutually_exclusive_group() | |
group_gpus.add_argument( | |
'--gpus', | |
type=int, | |
help='(Deprecated, please use --gpu-id) number of gpus to use ' | |
'(only applicable to non-distributed training).') | |
group_gpus.add_argument( | |
'--gpu-ids', | |
type=int, | |
nargs='+', | |
help='(Deprecated, please use --gpu-id) ids of gpus to use ' | |
'(only applicable to non-distributed training)') | |
group_gpus.add_argument( | |
'--gpu-id', | |
type=int, | |
default=0, | |
help='id of gpu to use ' | |
'(only applicable to non-distributed training)') | |
parser.add_argument('--seed', type=int, default=None, help='Random seed.') | |
parser.add_argument( | |
'--diff_seed', | |
action='store_true', | |
help='Whether or not set different seeds for different ranks') | |
parser.add_argument( | |
'--deterministic', | |
action='store_true', | |
help='Whether to set deterministic options for CUDNN backend.') | |
parser.add_argument( | |
'--options', | |
nargs='+', | |
action=DictAction, | |
help='Override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file (deprecate), ' | |
'change to --cfg-options instead.') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='Override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be of the form of either ' | |
'key="[a,b]" or key=a,b .The argument also allows nested list/tuple ' | |
'values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks ' | |
'are necessary and that no white space is allowed.') | |
parser.add_argument( | |
'--launcher', | |
choices=['none', 'pytorch', 'slurm', 'mpi'], | |
default='none', | |
help='Options for job launcher.') | |
parser.add_argument('--local_rank', type=int, default=0) | |
args = parser.parse_args() | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
if args.options and args.cfg_options: | |
raise ValueError( | |
'--options and --cfg-options cannot be both ' | |
'specified, --options is deprecated in favor of --cfg-options') | |
if args.options: | |
warnings.warn('--options is deprecated in favor of --cfg-options') | |
args.cfg_options = args.options | |
return args | |
def main(): | |
args = parse_args() | |
cfg = Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
setup_multi_processes(cfg) | |
# set cudnn_benchmark | |
if cfg.get('cudnn_benchmark', False): | |
torch.backends.cudnn.benchmark = True | |
# work_dir is determined in this priority: CLI > segment in file > filename | |
if args.work_dir is not None: | |
# update configs according to CLI args if args.work_dir is not None | |
cfg.work_dir = args.work_dir | |
elif cfg.get('work_dir', None) is None: | |
# use config filename as default work_dir if cfg.work_dir is None | |
cfg.work_dir = osp.join('./work_dirs', | |
osp.splitext(osp.basename(args.config))[0]) | |
if args.load_from is not None: | |
cfg.load_from = args.load_from | |
if args.resume_from is not None: | |
cfg.resume_from = args.resume_from | |
if args.gpus is not None: | |
cfg.gpu_ids = range(1) | |
warnings.warn('`--gpus` is deprecated because we only support ' | |
'single GPU mode in non-distributed training. ' | |
'Use `gpus=1` now.') | |
if args.gpu_ids is not None: | |
cfg.gpu_ids = args.gpu_ids[0:1] | |
warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. ' | |
'Because we only support single GPU mode in ' | |
'non-distributed training. Use the first GPU ' | |
'in `gpu_ids` now.') | |
if args.gpus is None and args.gpu_ids is None: | |
cfg.gpu_ids = [args.gpu_id] | |
# init distributed env first, since logger depends on the dist info. | |
if args.launcher == 'none': | |
distributed = False | |
else: | |
distributed = True | |
init_dist(args.launcher, **cfg.dist_params) | |
# re-set gpu_ids with distributed training mode | |
_, world_size = get_dist_info() | |
cfg.gpu_ids = range(world_size) | |
# create work_dir | |
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) | |
# dump config | |
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) | |
# init the logger before other steps | |
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) | |
log_file = osp.join(cfg.work_dir, f'{timestamp}.log') | |
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) | |
# init the meta dict to record some important information such as | |
# environment info and seed, which will be logged | |
meta = dict() | |
# log env info | |
env_info_dict = collect_env() | |
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) | |
dash_line = '-' * 60 + '\n' | |
logger.info('Environment info:\n' + dash_line + env_info + '\n' + | |
dash_line) | |
meta['env_info'] = env_info | |
meta['config'] = cfg.pretty_text | |
# log some basic info | |
logger.info(f'Distributed training: {distributed}') | |
logger.info(f'Config:\n{cfg.pretty_text}') | |
# set random seeds | |
seed = init_random_seed(args.seed) | |
seed = seed + dist.get_rank() if args.diff_seed else seed | |
logger.info(f'Set random seed to {seed}, ' | |
f'deterministic: {args.deterministic}') | |
set_random_seed(seed, deterministic=args.deterministic) | |
cfg.seed = seed | |
meta['seed'] = seed | |
meta['exp_name'] = osp.basename(args.config) | |
model = build_detector( | |
cfg.model, | |
train_cfg=cfg.get('train_cfg'), | |
test_cfg=cfg.get('test_cfg')) | |
model.init_weights() | |
datasets = [build_dataset(cfg.data.train)] | |
if len(cfg.workflow) == 2: | |
val_dataset = copy.deepcopy(cfg.data.val) | |
if cfg.data.train.get('pipeline', None) is None: | |
if is_2dlist(cfg.data.train.datasets): | |
train_pipeline = cfg.data.train.datasets[0][0].pipeline | |
else: | |
train_pipeline = cfg.data.train.datasets[0].pipeline | |
elif is_2dlist(cfg.data.train.pipeline): | |
train_pipeline = cfg.data.train.pipeline[0] | |
else: | |
train_pipeline = cfg.data.train.pipeline | |
if val_dataset['type'] in ['ConcatDataset', 'UniformConcatDataset']: | |
for dataset in val_dataset['datasets']: | |
dataset.pipeline = train_pipeline | |
else: | |
val_dataset.pipeline = train_pipeline | |
datasets.append(build_dataset(val_dataset)) | |
if cfg.checkpoint_config is not None: | |
# save mmdet version, config file content and class names in | |
# checkpoints as meta data | |
cfg.checkpoint_config.meta = dict( | |
mmocr_version=__version__ + get_git_hash()[:7], | |
CLASSES=datasets[0].CLASSES) | |
# add an attribute for visualization convenience | |
model.CLASSES = datasets[0].CLASSES | |
train_detector( | |
model, | |
datasets, | |
cfg, | |
distributed=distributed, | |
validate=(not args.no_validate), | |
timestamp=timestamp, | |
meta=meta) | |
if __name__ == '__main__': | |
main() | |