MMOCR / tools /det_test_imgs.py
tomofi's picture
Add application file
2366e36
#!/usr/bin/env python
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from argparse import ArgumentParser
import mmcv
from mmcv.utils import ProgressBar
from mmocr.apis import init_detector, model_inference
from mmocr.models import build_detector # noqa: F401
from mmocr.utils import list_from_file, list_to_file
def gen_target_path(target_root_path, src_name, suffix):
"""Gen target file path.
Args:
target_root_path (str): The target root path.
src_name (str): The source file name.
suffix (str): The suffix of target file.
"""
assert isinstance(target_root_path, str)
assert isinstance(src_name, str)
assert isinstance(suffix, str)
file_name = osp.split(src_name)[-1]
name = osp.splitext(file_name)[0]
return osp.join(target_root_path, name + suffix)
def save_results(result, out_dir, img_name, score_thr=0.3):
"""Save result of detected bounding boxes (quadrangle or polygon) to txt
file.
Args:
result (dict): Text Detection result for one image.
img_name (str): Image file name.
out_dir (str): Dir of txt files to save detected results.
score_thr (float, optional): Score threshold to filter bboxes.
"""
assert 'boundary_result' in result
assert score_thr > 0 and score_thr < 1
txt_file = gen_target_path(out_dir, img_name, '.txt')
valid_boundary_res = [
res for res in result['boundary_result'] if res[-1] > score_thr
]
lines = [
','.join([str(round(x)) for x in row]) for row in valid_boundary_res
]
list_to_file(txt_file, lines)
def main():
parser = ArgumentParser()
parser.add_argument('img_root', type=str, help='Image root path')
parser.add_argument('img_list', type=str, help='Image path list file')
parser.add_argument('config', type=str, help='Config file')
parser.add_argument('checkpoint', type=str, help='Checkpoint file')
parser.add_argument(
'--score-thr', type=float, default=0.5, help='Bbox score threshold')
parser.add_argument(
'--out-dir',
type=str,
default='./results',
help='Dir to save '
'visualize images '
'and bbox')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference.')
args = parser.parse_args()
assert 0 < args.score_thr < 1
# build the model from a config file and a checkpoint file
model = init_detector(args.config, args.checkpoint, device=args.device)
if hasattr(model, 'module'):
model = model.module
# Start Inference
out_vis_dir = osp.join(args.out_dir, 'out_vis_dir')
mmcv.mkdir_or_exist(out_vis_dir)
out_txt_dir = osp.join(args.out_dir, 'out_txt_dir')
mmcv.mkdir_or_exist(out_txt_dir)
lines = list_from_file(args.img_list)
progressbar = ProgressBar(task_num=len(lines))
for line in lines:
progressbar.update()
img_path = osp.join(args.img_root, line.strip())
if not osp.exists(img_path):
raise FileNotFoundError(img_path)
# Test a single image
result = model_inference(model, img_path)
img_name = osp.basename(img_path)
# save result
save_results(result, out_txt_dir, img_name, score_thr=args.score_thr)
# show result
out_file = osp.join(out_vis_dir, img_name)
kwargs_dict = {
'score_thr': args.score_thr,
'show': False,
'out_file': out_file
}
model.show_result(img_path, result, **kwargs_dict)
print(f'\nInference done, and results saved in {args.out_dir}\n')
if __name__ == '__main__':
main()