Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os | |
import warnings | |
import mmcv | |
import torch | |
from mmcv import Config, DictAction | |
from mmcv.cnn import fuse_conv_bn | |
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel | |
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, | |
wrap_fp16_model) | |
from mmdet.apis import multi_gpu_test | |
from mmocr.apis.test import single_gpu_test | |
from mmocr.apis.utils import (disable_text_recog_aug_test, | |
replace_image_to_tensor) | |
from mmocr.datasets import build_dataloader, build_dataset | |
from mmocr.models import build_detector | |
from mmocr.utils import revert_sync_batchnorm, setup_multi_processes | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='MMOCR test (and eval) a model.') | |
parser.add_argument('config', help='Test config file path.') | |
parser.add_argument('checkpoint', help='Checkpoint file.') | |
parser.add_argument('--out', help='Output result file in pickle format.') | |
parser.add_argument( | |
'--fuse-conv-bn', | |
action='store_true', | |
help='Whether to fuse conv and bn, this will slightly increase' | |
'the inference speed.') | |
parser.add_argument( | |
'--gpu-id', | |
type=int, | |
default=0, | |
help='id of gpu to use ' | |
'(only applicable to non-distributed testing)') | |
parser.add_argument( | |
'--format-only', | |
action='store_true', | |
help='Format the output results without performing evaluation. It is' | |
'useful when you want to format the results to a specific format and ' | |
'submit them to the test server.') | |
parser.add_argument( | |
'--eval', | |
type=str, | |
nargs='+', | |
help='The evaluation metrics, which depends on the dataset, e.g.,' | |
'"bbox", "seg", "proposal" for COCO, and "mAP", "recall" for' | |
'PASCAL VOC.') | |
parser.add_argument('--show', action='store_true', help='Show results.') | |
parser.add_argument( | |
'--show-dir', help='Directory where the output images will be saved.') | |
parser.add_argument( | |
'--show-score-thr', | |
type=float, | |
default=0.3, | |
help='Score threshold (default: 0.3).') | |
parser.add_argument( | |
'--gpu-collect', | |
action='store_true', | |
help='Whether to use gpu to collect results.') | |
parser.add_argument( | |
'--tmpdir', | |
help='The tmp directory used for collecting results from multiple ' | |
'workers, available when gpu-collect is not specified.') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='Override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into the config file. If the value ' | |
'to be overwritten is a list, it should be of the form of either ' | |
'key="[a,b]" or key=a,b. The argument also allows nested list/tuple ' | |
'values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks ' | |
'are necessary and that no white space is allowed.') | |
parser.add_argument( | |
'--options', | |
nargs='+', | |
action=DictAction, | |
help='Custom options for evaluation, the key-value pair in xxx=yyy ' | |
'format will be kwargs for dataset.evaluate() function (deprecate), ' | |
'change to --eval-options instead.') | |
parser.add_argument( | |
'--eval-options', | |
nargs='+', | |
action=DictAction, | |
help='Custom options for evaluation, the key-value pair in xxx=yyy ' | |
'format will be kwargs for dataset.evaluate() function.') | |
parser.add_argument( | |
'--launcher', | |
choices=['none', 'pytorch', 'slurm', 'mpi'], | |
default='none', | |
help='Options for job launcher.') | |
parser.add_argument('--local_rank', type=int, default=0) | |
args = parser.parse_args() | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
if args.options and args.eval_options: | |
raise ValueError( | |
'--options and --eval-options cannot be both ' | |
'specified, --options is deprecated in favor of --eval-options.') | |
if args.options: | |
warnings.warn('--options is deprecated in favor of --eval-options.') | |
args.eval_options = args.options | |
return args | |
def main(): | |
args = parse_args() | |
assert ( | |
args.out or args.eval or args.format_only or args.show | |
or args.show_dir), ( | |
'Please specify at least one operation (save/eval/format/show the ' | |
'results / save the results) with the argument "--out", "--eval"' | |
', "--format-only", "--show" or "--show-dir".') | |
if args.eval and args.format_only: | |
raise ValueError('--eval and --format_only cannot be both specified.') | |
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): | |
raise ValueError('The output file must be a pkl file.') | |
cfg = Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
setup_multi_processes(cfg) | |
# set cudnn_benchmark | |
if cfg.get('cudnn_benchmark', False): | |
torch.backends.cudnn.benchmark = True | |
if cfg.model.get('pretrained'): | |
cfg.model.pretrained = None | |
if cfg.model.get('neck'): | |
if isinstance(cfg.model.neck, list): | |
for neck_cfg in cfg.model.neck: | |
if neck_cfg.get('rfp_backbone'): | |
if neck_cfg.rfp_backbone.get('pretrained'): | |
neck_cfg.rfp_backbone.pretrained = None | |
elif cfg.model.neck.get('rfp_backbone'): | |
if cfg.model.neck.rfp_backbone.get('pretrained'): | |
cfg.model.neck.rfp_backbone.pretrained = None | |
# in case the test dataset is concatenated | |
samples_per_gpu = (cfg.data.get('test_dataloader', {})).get( | |
'samples_per_gpu', cfg.data.get('samples_per_gpu', 1)) | |
if samples_per_gpu > 1: | |
cfg = disable_text_recog_aug_test(cfg) | |
cfg = replace_image_to_tensor(cfg) | |
# init distributed env first, since logger depends on the dist info. | |
if args.launcher == 'none': | |
cfg.gpu_ids = [args.gpu_id] | |
distributed = False | |
else: | |
distributed = True | |
init_dist(args.launcher, **cfg.dist_params) | |
# build the dataloader | |
dataset = build_dataset(cfg.data.test, dict(test_mode=True)) | |
# step 1: give default values and override (if exist) from cfg.data | |
loader_cfg = { | |
**dict(seed=cfg.get('seed'), drop_last=False, dist=distributed), | |
**({} if torch.__version__ != 'parrots' else dict( | |
prefetch_num=2, | |
pin_memory=False, | |
)), | |
**dict((k, cfg.data[k]) for k in [ | |
'workers_per_gpu', | |
'seed', | |
'prefetch_num', | |
'pin_memory', | |
'persistent_workers', | |
] if k in cfg.data) | |
} | |
test_loader_cfg = { | |
**loader_cfg, | |
**dict(shuffle=False, drop_last=False), | |
**cfg.data.get('test_dataloader', {}), | |
**dict(samples_per_gpu=samples_per_gpu) | |
} | |
data_loader = build_dataloader(dataset, **test_loader_cfg) | |
# build the model and load checkpoint | |
cfg.model.train_cfg = None | |
model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) | |
model = revert_sync_batchnorm(model) | |
fp16_cfg = cfg.get('fp16', None) | |
if fp16_cfg is not None: | |
wrap_fp16_model(model) | |
load_checkpoint(model, args.checkpoint, map_location='cpu') | |
if args.fuse_conv_bn: | |
model = fuse_conv_bn(model) | |
if not distributed: | |
model = MMDataParallel(model, device_ids=cfg.gpu_ids) | |
is_kie = cfg.model.type in ['SDMGR'] | |
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, | |
is_kie, args.show_score_thr) | |
else: | |
model = MMDistributedDataParallel( | |
model.cuda(), | |
device_ids=[torch.cuda.current_device()], | |
broadcast_buffers=False) | |
outputs = multi_gpu_test(model, data_loader, args.tmpdir, | |
args.gpu_collect) | |
rank, _ = get_dist_info() | |
if rank == 0: | |
if args.out: | |
print(f'\nwriting results to {args.out}') | |
mmcv.dump(outputs, args.out) | |
kwargs = {} if args.eval_options is None else args.eval_options | |
if args.format_only: | |
dataset.format_results(outputs, **kwargs) | |
if args.eval: | |
eval_kwargs = cfg.get('evaluation', {}).copy() | |
# hard-code way to remove EvalHook args | |
for key in [ | |
'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', | |
'rule' | |
]: | |
eval_kwargs.pop(key, None) | |
eval_kwargs.update(dict(metric=args.eval, **kwargs)) | |
print(dataset.evaluate(outputs, **eval_kwargs)) | |
if __name__ == '__main__': | |
main() | |