Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import os | |
import platform | |
import pytest | |
from mmcv.image import imread | |
from mmocr.apis.inference import init_detector, model_inference | |
from mmocr.datasets import build_dataset # noqa: F401 | |
from mmocr.models import build_detector # noqa: F401 | |
from mmocr.utils import revert_sync_batchnorm | |
def build_model(config_file): | |
device = 'cpu' | |
model = init_detector(config_file, checkpoint=None, device=device) | |
model = revert_sync_batchnorm(model) | |
return model | |
def test_model_inference(cfg_file): | |
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) | |
config_file = os.path.join(tmp_dir, cfg_file) | |
model = build_model(config_file) | |
with pytest.raises(AssertionError): | |
model_inference(model, 1) | |
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg') | |
model_inference(model, sample_img_path) | |
# numpy inference | |
img = imread(sample_img_path) | |
model_inference(model, img) | |
def test_model_batch_inference_det(cfg_file): | |
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) | |
config_file = os.path.join(tmp_dir, cfg_file) | |
model = build_model(config_file) | |
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg') | |
results = model_inference(model, [sample_img_path], batch_mode=True) | |
assert len(results) == 1 | |
# numpy inference | |
img = imread(sample_img_path) | |
results = model_inference(model, [img], batch_mode=True) | |
assert len(results) == 1 | |
def test_model_batch_inference_raises_exception_error_aug_test_recog(cfg_file): | |
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) | |
config_file = os.path.join(tmp_dir, cfg_file) | |
model = build_model(config_file) | |
with pytest.raises( | |
Exception, | |
match='aug test does not support inference with batch size'): | |
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg') | |
model_inference(model, [sample_img_path, sample_img_path]) | |
with pytest.raises( | |
Exception, | |
match='aug test does not support inference with batch size'): | |
img = imread(sample_img_path) | |
model_inference(model, [img, img]) | |
def test_model_batch_inference_recog(cfg_file): | |
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) | |
config_file = os.path.join(tmp_dir, cfg_file) | |
model = build_model(config_file) | |
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_recog.jpg') | |
results = model_inference( | |
model, [sample_img_path, sample_img_path], batch_mode=True) | |
assert len(results) == 2 | |
# numpy inference | |
img = imread(sample_img_path) | |
results = model_inference(model, [img, img], batch_mode=True) | |
assert len(results) == 2 | |
def test_model_batch_inference_empty_detection(cfg_file): | |
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) | |
config_file = os.path.join(tmp_dir, cfg_file) | |
model = build_model(config_file) | |
empty_detection = [] | |
with pytest.raises( | |
Exception, | |
match='empty imgs provided, please check and try again'): | |
model_inference(model, empty_detection, batch_mode=True) | |