Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from mmocr.models.builder import CONVERTORS | |
from mmocr.utils import list_from_file | |
class BaseConvertor: | |
"""Convert between text, index and tensor for text recognize pipeline. | |
Args: | |
dict_type (str): Type of dict, should be either 'DICT36' or 'DICT90'. | |
dict_file (None|str): Character dict file path. If not none, | |
the dict_file is of higher priority than dict_type. | |
dict_list (None|list[str]): Character list. If not none, the list | |
is of higher priority than dict_type, but lower than dict_file. | |
""" | |
start_idx = end_idx = padding_idx = 0 | |
unknown_idx = None | |
lower = False | |
DICT36 = tuple('0123456789abcdefghijklmnopqrstuvwxyz') | |
DICT90 = tuple('0123456789abcdefghijklmnopqrstuvwxyz' | |
'ABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()' | |
'*+,-./:;<=>?@[\\]_`~') | |
def __init__(self, dict_type='DICT90', dict_file=None, dict_list=None): | |
assert dict_type in ('DICT36', 'DICT90') | |
assert dict_file is None or isinstance(dict_file, str) | |
assert dict_list is None or isinstance(dict_list, list) | |
self.idx2char = [] | |
if dict_file is not None: | |
for line in list_from_file(dict_file): | |
line = line.strip() | |
if line != '': | |
self.idx2char.append(line) | |
elif dict_list is not None: | |
self.idx2char = dict_list | |
else: | |
if dict_type == 'DICT36': | |
self.idx2char = list(self.DICT36) | |
else: | |
self.idx2char = list(self.DICT90) | |
self.char2idx = {} | |
for idx, char in enumerate(self.idx2char): | |
self.char2idx[char] = idx | |
def num_classes(self): | |
"""Number of output classes.""" | |
return len(self.idx2char) | |
def str2idx(self, strings): | |
"""Convert strings to indexes. | |
Args: | |
strings (list[str]): ['hello', 'world']. | |
Returns: | |
indexes (list[list[int]]): [[1,2,3,3,4], [5,4,6,3,7]]. | |
""" | |
assert isinstance(strings, list) | |
indexes = [] | |
for string in strings: | |
if self.lower: | |
string = string.lower() | |
index = [] | |
for char in string: | |
char_idx = self.char2idx.get(char, self.unknown_idx) | |
if char_idx is None: | |
raise Exception(f'Chararcter: {char} not in dict,' | |
f' please check gt_label and use' | |
f' custom dict file,' | |
f' or set "with_unknown=True"') | |
index.append(char_idx) | |
indexes.append(index) | |
return indexes | |
def str2tensor(self, strings): | |
"""Convert text-string to input tensor. | |
Args: | |
strings (list[str]): ['hello', 'world']. | |
Returns: | |
tensors (list[torch.Tensor]): [torch.Tensor([1,2,3,3,4]), | |
torch.Tensor([5,4,6,3,7])]. | |
""" | |
raise NotImplementedError | |
def idx2str(self, indexes): | |
"""Convert indexes to text strings. | |
Args: | |
indexes (list[list[int]]): [[1,2,3,3,4], [5,4,6,3,7]]. | |
Returns: | |
strings (list[str]): ['hello', 'world']. | |
""" | |
assert isinstance(indexes, list) | |
strings = [] | |
for index in indexes: | |
string = [self.idx2char[i] for i in index] | |
strings.append(''.join(string)) | |
return strings | |
def tensor2idx(self, output): | |
"""Convert model output tensor to character indexes and scores. | |
Args: | |
output (tensor): The model outputs with size: N * T * C | |
Returns: | |
indexes (list[list[int]]): [[1,2,3,3,4], [5,4,6,3,7]]. | |
scores (list[list[float]]): [[0.9,0.8,0.95,0.97,0.94], | |
[0.9,0.9,0.98,0.97,0.96]]. | |
""" | |
raise NotImplementedError | |