Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import numpy as np | |
from mmocr.datasets.pipelines import LoadImageFromNdarray, LoadTextAnnotations | |
def _create_dummy_ann(): | |
results = {} | |
results['img_info'] = {} | |
results['img_info']['height'] = 1000 | |
results['img_info']['width'] = 1000 | |
results['ann_info'] = {} | |
results['ann_info']['masks'] = [] | |
results['mask_fields'] = [] | |
results['ann_info']['masks_ignore'] = [ | |
[[499, 94, 531, 94, 531, 124, 499, 124]], | |
[[3, 156, 81, 155, 78, 181, 0, 182]], | |
[[11, 223, 59, 221, 59, 234, 11, 236]], | |
[[500, 156, 551, 156, 550, 165, 499, 165]] | |
] | |
return results | |
def test_loadtextannotation(): | |
results = _create_dummy_ann() | |
with_bbox = True | |
with_label = True | |
with_mask = True | |
with_seg = False | |
poly2mask = False | |
# If no 'ori_shape' in result but use_img_shape=True, | |
# result['img_info']['height'] and result['img_info']['width'] | |
# will be used to generate mask. | |
loader = LoadTextAnnotations( | |
with_bbox, | |
with_label, | |
with_mask, | |
with_seg, | |
poly2mask, | |
use_img_shape=True) | |
tmp_results = copy.deepcopy(results) | |
output = loader._load_masks(tmp_results) | |
assert len(output['gt_masks_ignore']) == 4 | |
assert np.allclose(output['gt_masks_ignore'].masks[0], | |
[[499, 94, 531, 94, 531, 124, 499, 124]]) | |
assert output['gt_masks_ignore'].height == results['img_info']['height'] | |
# If 'ori_shape' in result and use_img_shape=True, | |
# result['ori_shape'] will be used to generate mask. | |
loader = LoadTextAnnotations( | |
with_bbox, | |
with_label, | |
with_mask, | |
with_seg, | |
poly2mask=True, | |
use_img_shape=True) | |
tmp_results = copy.deepcopy(results) | |
tmp_results['ori_shape'] = (640, 640, 3) | |
output = loader._load_masks(tmp_results) | |
assert output['img_info']['height'] == 640 | |
assert output['gt_masks_ignore'].height == 640 | |
def test_load_img_from_numpy(): | |
result = {'img': np.ones((32, 100, 3), dtype=np.uint8)} | |
load = LoadImageFromNdarray(color_type='color') | |
output = load(result) | |
assert output['img'].shape[2] == 3 | |
assert len(output['img'].shape) == 3 | |
result = {'img': np.ones((32, 100, 1), dtype=np.uint8)} | |
load = LoadImageFromNdarray(color_type='color') | |
output = load(result) | |
assert output['img'].shape[2] == 3 | |
result = {'img': np.ones((32, 100, 3), dtype=np.uint8)} | |
load = LoadImageFromNdarray(color_type='grayscale', to_float32=True) | |
output = load(result) | |
assert output['img'].shape[2] == 1 | |