Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import base64 | |
import os | |
import mmcv | |
import torch | |
from ts.torch_handler.base_handler import BaseHandler | |
from mmocr.apis import init_detector, model_inference | |
from mmocr.datasets.pipelines import * # NOQA | |
class MMOCRHandler(BaseHandler): | |
threshold = 0.5 | |
def initialize(self, context): | |
properties = context.system_properties | |
self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.device = torch.device(self.map_location + ':' + | |
str(properties.get('gpu_id')) if torch.cuda. | |
is_available() else self.map_location) | |
self.manifest = context.manifest | |
model_dir = properties.get('model_dir') | |
serialized_file = self.manifest['model']['serializedFile'] | |
checkpoint = os.path.join(model_dir, serialized_file) | |
self.config_file = os.path.join(model_dir, 'config.py') | |
self.model = init_detector(self.config_file, checkpoint, self.device) | |
self.initialized = True | |
def preprocess(self, data): | |
images = [] | |
for row in data: | |
image = row.get('data') or row.get('body') | |
if isinstance(image, str): | |
image = base64.b64decode(image) | |
image = mmcv.imfrombytes(image) | |
images.append(image) | |
return images | |
def inference(self, data, *args, **kwargs): | |
results = model_inference(self.model, data) | |
return results | |
def postprocess(self, data): | |
# Format output following the example OCRHandler format | |
return data | |