MMOCR / tests /test_dataset /test_ocr_transforms.py
tomofi's picture
Add application file
2366e36
raw
history blame
3.82 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
import unittest.mock as mock
import numpy as np
import torch
import torchvision.transforms.functional as TF
from PIL import Image
import mmocr.datasets.pipelines.ocr_transforms as transforms
def test_resize_ocr():
input_img = np.ones((64, 256, 3), dtype=np.uint8)
rci = transforms.ResizeOCR(
32, min_width=32, max_width=160, keep_aspect_ratio=True)
results = {'img_shape': input_img.shape, 'img': input_img}
# test call
results = rci(results)
assert np.allclose([32, 160, 3], results['pad_shape'])
assert np.allclose([32, 160, 3], results['img'].shape)
assert 'valid_ratio' in results
assert math.isclose(results['valid_ratio'], 0.8)
assert math.isclose(np.sum(results['img'][:, 129:, :]), 0)
rci = transforms.ResizeOCR(
32, min_width=32, max_width=160, keep_aspect_ratio=False)
results = {'img_shape': input_img.shape, 'img': input_img}
results = rci(results)
assert math.isclose(results['valid_ratio'], 1)
def test_to_tensor():
input_img = np.ones((64, 256, 3), dtype=np.uint8)
expect_output = TF.to_tensor(input_img)
rci = transforms.ToTensorOCR()
results = {'img': input_img}
results = rci(results)
assert np.allclose(results['img'].numpy(), expect_output.numpy())
def test_normalize():
inputs = torch.zeros(3, 10, 10)
expect_output = torch.ones_like(inputs) * (-1)
rci = transforms.NormalizeOCR(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
results = {'img': inputs}
results = rci(results)
assert np.allclose(results['img'].numpy(), expect_output.numpy())
@mock.patch('%s.transforms.np.random.random' % __name__)
def test_online_crop(mock_random):
kwargs = dict(
box_keys=['x1', 'y1', 'x2', 'y2', 'x3', 'y3', 'x4', 'y4'],
jitter_prob=0.5,
max_jitter_ratio_x=0.05,
max_jitter_ratio_y=0.02)
mock_random.side_effect = [0.1, 1, 1, 1]
src_img = np.ones((100, 100, 3), dtype=np.uint8)
results = {
'img': src_img,
'img_info': {
'x1': '20',
'y1': '20',
'x2': '40',
'y2': '20',
'x3': '40',
'y3': '40',
'x4': '20',
'y4': '40'
}
}
rci = transforms.OnlineCropOCR(**kwargs)
results = rci(results)
assert np.allclose(results['img_shape'], [20, 20, 3])
# test not crop
mock_random.side_effect = [0.1, 1, 1, 1]
results['img_info'] = {}
results['img'] = src_img
results = rci(results)
assert np.allclose(results['img'].shape, [100, 100, 3])
def test_fancy_pca():
input_tensor = torch.rand(3, 32, 100)
rci = transforms.FancyPCA()
results = {'img': input_tensor}
results = rci(results)
assert results['img'].shape == torch.Size([3, 32, 100])
@mock.patch('%s.transforms.np.random.uniform' % __name__)
def test_random_padding(mock_random):
kwargs = dict(max_ratio=[0.0, 0.0, 0.0, 0.0], box_type=None)
mock_random.side_effect = [1, 1, 1, 1]
src_img = np.ones((32, 100, 3), dtype=np.uint8)
results = {'img': src_img, 'img_shape': (32, 100, 3)}
rci = transforms.RandomPaddingOCR(**kwargs)
results = rci(results)
print(results['img'].shape)
assert np.allclose(results['img_shape'], [96, 300, 3])
def test_opencv2pil():
src_img = np.ones((32, 100, 3), dtype=np.uint8)
results = {'img': src_img}
rci = transforms.OpencvToPil()
results = rci(results)
assert np.allclose(results['img'].size, (100, 32))
def test_pil2opencv():
src_img = Image.new('RGB', (100, 32), color=(255, 255, 255))
results = {'img': src_img}
rci = transforms.PilToOpencv()
results = rci(results)
assert np.allclose(results['img'].shape, (32, 100, 3))