Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from operator import itemgetter | |
import mmcv | |
from mmcv.utils import print_log | |
import mmocr.utils as utils | |
from mmocr.core.evaluation import hmean_ic13, hmean_iou | |
from mmocr.core.evaluation.utils import (filter_2dlist_result, | |
select_top_boundary) | |
from mmocr.core.mask import extract_boundary | |
def output_ranklist(img_results, img_infos, out_file): | |
"""Output the worst results for debugging. | |
Args: | |
img_results (list[dict]): Image result list. | |
img_infos (list[dict]): Image information list. | |
out_file (str): The output file path. | |
Returns: | |
sorted_results (list[dict]): Image results sorted by hmean. | |
""" | |
assert utils.is_type_list(img_results, dict) | |
assert utils.is_type_list(img_infos, dict) | |
assert isinstance(out_file, str) | |
assert out_file.endswith('json') | |
sorted_results = [] | |
for idx, result in enumerate(img_results): | |
name = img_infos[idx]['file_name'] | |
img_result = result | |
img_result['file_name'] = name | |
sorted_results.append(img_result) | |
sorted_results = sorted( | |
sorted_results, key=itemgetter('hmean'), reverse=False) | |
mmcv.dump(sorted_results, file=out_file) | |
return sorted_results | |
def get_gt_masks(ann_infos): | |
"""Get ground truth masks and ignored masks. | |
Args: | |
ann_infos (list[dict]): Each dict contains annotation | |
infos of one image, containing following keys: | |
masks, masks_ignore. | |
Returns: | |
gt_masks (list[list[list[int]]]): Ground truth masks. | |
gt_masks_ignore (list[list[list[int]]]): Ignored masks. | |
""" | |
assert utils.is_type_list(ann_infos, dict) | |
gt_masks = [] | |
gt_masks_ignore = [] | |
for ann_info in ann_infos: | |
masks = ann_info['masks'] | |
mask_gt = [] | |
for mask in masks: | |
assert len(mask[0]) >= 8 and len(mask[0]) % 2 == 0 | |
mask_gt.append(mask[0]) | |
gt_masks.append(mask_gt) | |
masks_ignore = ann_info['masks_ignore'] | |
mask_gt_ignore = [] | |
for mask_ignore in masks_ignore: | |
assert len(mask_ignore[0]) >= 8 and len(mask_ignore[0]) % 2 == 0 | |
mask_gt_ignore.append(mask_ignore[0]) | |
gt_masks_ignore.append(mask_gt_ignore) | |
return gt_masks, gt_masks_ignore | |
def eval_hmean(results, | |
img_infos, | |
ann_infos, | |
metrics={'hmean-iou'}, | |
score_thr=0.3, | |
rank_list=None, | |
logger=None, | |
**kwargs): | |
"""Evaluation in hmean metric. | |
Args: | |
results (list[dict]): Each dict corresponds to one image, | |
containing the following keys: boundary_result | |
img_infos (list[dict]): Each dict corresponds to one image, | |
containing the following keys: filename, height, width | |
ann_infos (list[dict]): Each dict corresponds to one image, | |
containing the following keys: masks, masks_ignore | |
score_thr (float): Score threshold of prediction map. | |
metrics (set{str}): Hmean metric set, should be one or all of | |
{'hmean-iou', 'hmean-ic13'} | |
Returns: | |
dict[str: float] | |
""" | |
assert utils.is_type_list(results, dict) | |
assert utils.is_type_list(img_infos, dict) | |
assert utils.is_type_list(ann_infos, dict) | |
assert len(results) == len(img_infos) == len(ann_infos) | |
assert isinstance(metrics, set) | |
gts, gts_ignore = get_gt_masks(ann_infos) | |
preds = [] | |
pred_scores = [] | |
for result in results: | |
_, texts, scores = extract_boundary(result) | |
if len(texts) > 0: | |
assert utils.valid_boundary(texts[0], False) | |
valid_texts, valid_text_scores = filter_2dlist_result( | |
texts, scores, score_thr) | |
preds.append(valid_texts) | |
pred_scores.append(valid_text_scores) | |
eval_results = {} | |
for metric in metrics: | |
msg = f'Evaluating {metric}...' | |
if logger is None: | |
msg = '\n' + msg | |
print_log(msg, logger=logger) | |
best_result = dict(hmean=-1) | |
for iter in range(3, 10): | |
thr = iter * 0.1 | |
if thr < score_thr: | |
continue | |
top_preds = select_top_boundary(preds, pred_scores, thr) | |
if metric == 'hmean-iou': | |
result, img_result = hmean_iou.eval_hmean_iou( | |
top_preds, gts, gts_ignore) | |
elif metric == 'hmean-ic13': | |
result, img_result = hmean_ic13.eval_hmean_ic13( | |
top_preds, gts, gts_ignore) | |
else: | |
raise NotImplementedError | |
if rank_list is not None: | |
output_ranklist(img_result, img_infos, rank_list) | |
print_log( | |
'thr {0:.2f}, recall: {1[recall]:.3f}, ' | |
'precision: {1[precision]:.3f}, ' | |
'hmean: {1[hmean]:.3f}'.format(thr, result), | |
logger=logger) | |
if result['hmean'] > best_result['hmean']: | |
best_result = result | |
eval_results[metric + ':recall'] = best_result['recall'] | |
eval_results[metric + ':precision'] = best_result['precision'] | |
eval_results[metric + ':hmean'] = best_result['hmean'] | |
return eval_results | |