Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import json | |
import math | |
import os.path as osp | |
import tempfile | |
import torch | |
from mmocr.datasets.openset_kie_dataset import OpensetKIEDataset | |
from mmocr.utils import list_to_file | |
def _create_dummy_ann_file(ann_file): | |
ann_info1 = { | |
'file_name': | |
'1.png', | |
'height': | |
200, | |
'width': | |
200, | |
'annotations': [{ | |
'text': 'store', | |
'box': [11.0, 0.0, 22.0, 0.0, 12.0, 12.0, 0.0, 12.0], | |
'label': 1, | |
'edge': 1 | |
}, { | |
'text': 'MyFamily', | |
'box': [23.0, 2.0, 31.0, 1.0, 24.0, 11.0, 16.0, 11.0], | |
'label': 2, | |
'edge': 1 | |
}] | |
} | |
list_to_file(ann_file, [json.dumps(ann_info1)]) | |
return ann_info1 | |
def _create_dummy_dict_file(dict_file): | |
dict_str = '0123' | |
list_to_file(dict_file, list(dict_str)) | |
def _create_dummy_loader(): | |
loader = dict( | |
type='HardDiskLoader', | |
repeat=1, | |
parser=dict( | |
type='LineJsonParser', | |
keys=['file_name', 'height', 'width', 'annotations'])) | |
return loader | |
def test_openset_kie_dataset(): | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
# create dummy data | |
ann_file = osp.join(tmp_dir_name, 'fake_data.txt') | |
ann_info1 = _create_dummy_ann_file(ann_file) | |
dict_file = osp.join(tmp_dir_name, 'fake_dict.txt') | |
_create_dummy_dict_file(dict_file) | |
# test initialization | |
loader = _create_dummy_loader() | |
dataset = OpensetKIEDataset(ann_file, loader, dict_file, pipeline=[]) | |
dataset.prepare_train_img(0) | |
# test pre_pipeline | |
img_ann_info = dataset.data_infos[0] | |
img_info = { | |
'filename': img_ann_info['file_name'], | |
'height': img_ann_info['height'], | |
'width': img_ann_info['width'] | |
} | |
ann_info = dataset._parse_anno_info(img_ann_info['annotations']) | |
results = dict(img_info=img_info, ann_info=ann_info) | |
dataset.pre_pipeline(results) | |
assert results['img_prefix'] == dataset.img_prefix | |
assert 'ori_texts' in results | |
# test evaluation | |
result = { | |
'img_metas': [{ | |
'filename': ann_info1['file_name'], | |
'ori_filename': ann_info1['file_name'], | |
'ori_texts': [], | |
'ori_boxes': [] | |
}] | |
} | |
for anno in ann_info1['annotations']: | |
result['img_metas'][0]['ori_texts'].append(anno['text']) | |
result['img_metas'][0]['ori_boxes'].append(anno['box']) | |
result['nodes'] = torch.tensor([[0.01, 0.8, 0.01, 0.18], | |
[0.01, 0.01, 0.9, 0.08]]) | |
result['edges'] = torch.Tensor([[0.01, 0.99] for _ in range(4)]) | |
eval_res = dataset.evaluate([result]) | |
assert math.isclose(eval_res['edge_openset_f1'], 1.0, abs_tol=1e-4) | |