Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn.functional as F | |
from mmcv.runner import BaseModule, ModuleList | |
from torch import nn | |
from mmocr.models.builder import NECKS | |
class FPEM(BaseModule): | |
"""FPN-like feature fusion module in PANet. | |
Args: | |
in_channels (int): Number of input channels. | |
init_cfg (dict or list[dict], optional): Initialization configs. | |
""" | |
def __init__(self, in_channels=128, init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
self.up_add1 = SeparableConv2d(in_channels, in_channels, 1) | |
self.up_add2 = SeparableConv2d(in_channels, in_channels, 1) | |
self.up_add3 = SeparableConv2d(in_channels, in_channels, 1) | |
self.down_add1 = SeparableConv2d(in_channels, in_channels, 2) | |
self.down_add2 = SeparableConv2d(in_channels, in_channels, 2) | |
self.down_add3 = SeparableConv2d(in_channels, in_channels, 2) | |
def forward(self, c2, c3, c4, c5): | |
""" | |
Args: | |
c2, c3, c4, c5 (Tensor): Each has the shape of | |
:math:`(N, C_i, H_i, W_i)`. | |
Returns: | |
list[Tensor]: A list of 4 tensors of the same shape as input. | |
""" | |
# upsample | |
c4 = self.up_add1(self._upsample_add(c5, c4)) # c4 shape | |
c3 = self.up_add2(self._upsample_add(c4, c3)) | |
c2 = self.up_add3(self._upsample_add(c3, c2)) | |
# downsample | |
c3 = self.down_add1(self._upsample_add(c3, c2)) | |
c4 = self.down_add2(self._upsample_add(c4, c3)) | |
c5 = self.down_add3(self._upsample_add(c5, c4)) # c4 / 2 | |
return c2, c3, c4, c5 | |
def _upsample_add(self, x, y): | |
return F.interpolate(x, size=y.size()[2:]) + y | |
class SeparableConv2d(BaseModule): | |
def __init__(self, in_channels, out_channels, stride=1, init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
self.depthwise_conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
kernel_size=3, | |
padding=1, | |
stride=stride, | |
groups=in_channels) | |
self.pointwise_conv = nn.Conv2d( | |
in_channels=in_channels, out_channels=out_channels, kernel_size=1) | |
self.bn = nn.BatchNorm2d(out_channels) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
x = self.depthwise_conv(x) | |
x = self.pointwise_conv(x) | |
x = self.bn(x) | |
x = self.relu(x) | |
return x | |
class FPEM_FFM(BaseModule): | |
"""This code is from https://github.com/WenmuZhou/PAN.pytorch. | |
Args: | |
in_channels (list[int]): A list of 4 numbers of input channels. | |
conv_out (int): Number of output channels. | |
fpem_repeat (int): Number of FPEM layers before FFM operations. | |
align_corners (bool): The interpolation behaviour in FFM operation, | |
used in :func:`torch.nn.functional.interpolate`. | |
init_cfg (dict or list[dict], optional): Initialization configs. | |
""" | |
def __init__(self, | |
in_channels, | |
conv_out=128, | |
fpem_repeat=2, | |
align_corners=False, | |
init_cfg=dict( | |
type='Xavier', layer='Conv2d', distribution='uniform')): | |
super().__init__(init_cfg=init_cfg) | |
# reduce layers | |
self.reduce_conv_c2 = nn.Sequential( | |
nn.Conv2d( | |
in_channels=in_channels[0], | |
out_channels=conv_out, | |
kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU()) | |
self.reduce_conv_c3 = nn.Sequential( | |
nn.Conv2d( | |
in_channels=in_channels[1], | |
out_channels=conv_out, | |
kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU()) | |
self.reduce_conv_c4 = nn.Sequential( | |
nn.Conv2d( | |
in_channels=in_channels[2], | |
out_channels=conv_out, | |
kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU()) | |
self.reduce_conv_c5 = nn.Sequential( | |
nn.Conv2d( | |
in_channels=in_channels[3], | |
out_channels=conv_out, | |
kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU()) | |
self.align_corners = align_corners | |
self.fpems = ModuleList() | |
for _ in range(fpem_repeat): | |
self.fpems.append(FPEM(conv_out)) | |
def forward(self, x): | |
""" | |
Args: | |
x (list[Tensor]): A list of four tensors of shape | |
:math:`(N, C_i, H_i, W_i)`, representing C2, C3, C4, C5 | |
features respectively. :math:`C_i` should matches the number in | |
``in_channels``. | |
Returns: | |
list[Tensor]: Four tensors of shape | |
:math:`(N, C_{out}, H_0, W_0)` where :math:`C_{out}` is | |
``conv_out``. | |
""" | |
c2, c3, c4, c5 = x | |
# reduce channel | |
c2 = self.reduce_conv_c2(c2) | |
c3 = self.reduce_conv_c3(c3) | |
c4 = self.reduce_conv_c4(c4) | |
c5 = self.reduce_conv_c5(c5) | |
# FPEM | |
for i, fpem in enumerate(self.fpems): | |
c2, c3, c4, c5 = fpem(c2, c3, c4, c5) | |
if i == 0: | |
c2_ffm = c2 | |
c3_ffm = c3 | |
c4_ffm = c4 | |
c5_ffm = c5 | |
else: | |
c2_ffm += c2 | |
c3_ffm += c3 | |
c4_ffm += c4 | |
c5_ffm += c5 | |
# FFM | |
c5 = F.interpolate( | |
c5_ffm, | |
c2_ffm.size()[-2:], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
c4 = F.interpolate( | |
c4_ffm, | |
c2_ffm.size()[-2:], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
c3 = F.interpolate( | |
c3_ffm, | |
c2_ffm.size()[-2:], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
outs = [c2_ffm, c3, c4, c5] | |
return tuple(outs) | |