Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn.functional as F | |
from mmdet.core import BitmapMasks | |
from torch import nn | |
from mmocr.models.builder import LOSSES | |
from mmocr.utils import check_argument | |
class TextSnakeLoss(nn.Module): | |
"""The class for implementing TextSnake loss. This is partially adapted | |
from https://github.com/princewang1994/TextSnake.pytorch. | |
TextSnake: `A Flexible Representation for Detecting Text of Arbitrary | |
Shapes <https://arxiv.org/abs/1807.01544>`_. | |
Args: | |
ohem_ratio (float): The negative/positive ratio in ohem. | |
""" | |
def __init__(self, ohem_ratio=3.0): | |
super().__init__() | |
self.ohem_ratio = ohem_ratio | |
def balanced_bce_loss(self, pred, gt, mask): | |
assert pred.shape == gt.shape == mask.shape | |
positive = gt * mask | |
negative = (1 - gt) * mask | |
positive_count = int(positive.float().sum()) | |
gt = gt.float() | |
if positive_count > 0: | |
loss = F.binary_cross_entropy(pred, gt, reduction='none') | |
positive_loss = torch.sum(loss * positive.float()) | |
negative_loss = loss * negative.float() | |
negative_count = min( | |
int(negative.float().sum()), | |
int(positive_count * self.ohem_ratio)) | |
else: | |
positive_loss = torch.tensor(0.0, device=pred.device) | |
loss = F.binary_cross_entropy(pred, gt, reduction='none') | |
negative_loss = loss * negative.float() | |
negative_count = 100 | |
negative_loss, _ = torch.topk(negative_loss.view(-1), negative_count) | |
balance_loss = (positive_loss + torch.sum(negative_loss)) / ( | |
float(positive_count + negative_count) + 1e-5) | |
return balance_loss | |
def bitmasks2tensor(self, bitmasks, target_sz): | |
"""Convert Bitmasks to tensor. | |
Args: | |
bitmasks (list[BitmapMasks]): The BitmapMasks list. Each item is | |
for one img. | |
target_sz (tuple(int, int)): The target tensor of size | |
:math:`(H, W)`. | |
Returns: | |
list[Tensor]: The list of kernel tensors. Each element stands for | |
one kernel level. | |
""" | |
assert check_argument.is_type_list(bitmasks, BitmapMasks) | |
assert isinstance(target_sz, tuple) | |
batch_size = len(bitmasks) | |
num_masks = len(bitmasks[0]) | |
results = [] | |
for level_inx in range(num_masks): | |
kernel = [] | |
for batch_inx in range(batch_size): | |
mask = torch.from_numpy(bitmasks[batch_inx].masks[level_inx]) | |
# hxw | |
mask_sz = mask.shape | |
# left, right, top, bottom | |
pad = [ | |
0, target_sz[1] - mask_sz[1], 0, target_sz[0] - mask_sz[0] | |
] | |
mask = F.pad(mask, pad, mode='constant', value=0) | |
kernel.append(mask) | |
kernel = torch.stack(kernel) | |
results.append(kernel) | |
return results | |
def forward(self, pred_maps, downsample_ratio, gt_text_mask, | |
gt_center_region_mask, gt_mask, gt_radius_map, gt_sin_map, | |
gt_cos_map): | |
""" | |
Args: | |
pred_maps (Tensor): The prediction map of shape | |
:math:`(N, 5, H, W)`, where each dimension is the map of | |
"text_region", "center_region", "sin_map", "cos_map", and | |
"radius_map" respectively. | |
downsample_ratio (float): Downsample ratio. | |
gt_text_mask (list[BitmapMasks]): Gold text masks. | |
gt_center_region_mask (list[BitmapMasks]): Gold center region | |
masks. | |
gt_mask (list[BitmapMasks]): Gold general masks. | |
gt_radius_map (list[BitmapMasks]): Gold radius maps. | |
gt_sin_map (list[BitmapMasks]): Gold sin maps. | |
gt_cos_map (list[BitmapMasks]): Gold cos maps. | |
Returns: | |
dict: A loss dict with ``loss_text``, ``loss_center``, | |
``loss_radius``, ``loss_sin`` and ``loss_cos``. | |
""" | |
assert isinstance(downsample_ratio, float) | |
assert check_argument.is_type_list(gt_text_mask, BitmapMasks) | |
assert check_argument.is_type_list(gt_center_region_mask, BitmapMasks) | |
assert check_argument.is_type_list(gt_mask, BitmapMasks) | |
assert check_argument.is_type_list(gt_radius_map, BitmapMasks) | |
assert check_argument.is_type_list(gt_sin_map, BitmapMasks) | |
assert check_argument.is_type_list(gt_cos_map, BitmapMasks) | |
pred_text_region = pred_maps[:, 0, :, :] | |
pred_center_region = pred_maps[:, 1, :, :] | |
pred_sin_map = pred_maps[:, 2, :, :] | |
pred_cos_map = pred_maps[:, 3, :, :] | |
pred_radius_map = pred_maps[:, 4, :, :] | |
feature_sz = pred_maps.size() | |
device = pred_maps.device | |
# bitmask 2 tensor | |
mapping = { | |
'gt_text_mask': gt_text_mask, | |
'gt_center_region_mask': gt_center_region_mask, | |
'gt_mask': gt_mask, | |
'gt_radius_map': gt_radius_map, | |
'gt_sin_map': gt_sin_map, | |
'gt_cos_map': gt_cos_map | |
} | |
gt = {} | |
for key, value in mapping.items(): | |
gt[key] = value | |
if abs(downsample_ratio - 1.0) < 1e-2: | |
gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:]) | |
else: | |
gt[key] = [item.rescale(downsample_ratio) for item in gt[key]] | |
gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:]) | |
if key == 'gt_radius_map': | |
gt[key] = [item * downsample_ratio for item in gt[key]] | |
gt[key] = [item.to(device) for item in gt[key]] | |
scale = torch.sqrt(1.0 / (pred_sin_map**2 + pred_cos_map**2 + 1e-8)) | |
pred_sin_map = pred_sin_map * scale | |
pred_cos_map = pred_cos_map * scale | |
loss_text = self.balanced_bce_loss( | |
torch.sigmoid(pred_text_region), gt['gt_text_mask'][0], | |
gt['gt_mask'][0]) | |
text_mask = (gt['gt_text_mask'][0] * gt['gt_mask'][0]).float() | |
loss_center_map = F.binary_cross_entropy( | |
torch.sigmoid(pred_center_region), | |
gt['gt_center_region_mask'][0].float(), | |
reduction='none') | |
if int(text_mask.sum()) > 0: | |
loss_center = torch.sum( | |
loss_center_map * text_mask) / torch.sum(text_mask) | |
else: | |
loss_center = torch.tensor(0.0, device=device) | |
center_mask = (gt['gt_center_region_mask'][0] * | |
gt['gt_mask'][0]).float() | |
if int(center_mask.sum()) > 0: | |
map_sz = pred_radius_map.size() | |
ones = torch.ones(map_sz, dtype=torch.float, device=device) | |
loss_radius = torch.sum( | |
F.smooth_l1_loss( | |
pred_radius_map / (gt['gt_radius_map'][0] + 1e-2), | |
ones, | |
reduction='none') * center_mask) / torch.sum(center_mask) | |
loss_sin = torch.sum( | |
F.smooth_l1_loss( | |
pred_sin_map, gt['gt_sin_map'][0], reduction='none') * | |
center_mask) / torch.sum(center_mask) | |
loss_cos = torch.sum( | |
F.smooth_l1_loss( | |
pred_cos_map, gt['gt_cos_map'][0], reduction='none') * | |
center_mask) / torch.sum(center_mask) | |
else: | |
loss_radius = torch.tensor(0.0, device=device) | |
loss_sin = torch.tensor(0.0, device=device) | |
loss_cos = torch.tensor(0.0, device=device) | |
results = dict( | |
loss_text=loss_text, | |
loss_center=loss_center, | |
loss_radius=loss_radius, | |
loss_sin=loss_sin, | |
loss_cos=loss_cos) | |
return results | |