Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import torch.nn as nn | |
from mmcv.runner import BaseModule | |
from mmocr.models.builder import HEADS | |
from .head_mixin import HeadMixin | |
class TextSnakeHead(HeadMixin, BaseModule): | |
"""The class for TextSnake head: TextSnake: A Flexible Representation for | |
Detecting Text of Arbitrary Shapes. | |
TextSnake: `A Flexible Representation for Detecting Text of Arbitrary | |
Shapes <https://arxiv.org/abs/1807.01544>`_. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
downsample_ratio (float): Downsample ratio. | |
loss (dict): Configuration dictionary for loss type. | |
postprocessor (dict): Config of postprocessor for TextSnake. | |
train_cfg, test_cfg: Depreciated. | |
init_cfg (dict or list[dict], optional): Initialization configs. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels=5, | |
downsample_ratio=1.0, | |
loss=dict(type='TextSnakeLoss'), | |
postprocessor=dict( | |
type='TextSnakePostprocessor', text_repr_type='poly'), | |
train_cfg=None, | |
test_cfg=None, | |
init_cfg=dict( | |
type='Normal', | |
override=dict(name='out_conv'), | |
mean=0, | |
std=0.01), | |
**kwargs): | |
old_keys = ['text_repr_type', 'decoding_type'] | |
for key in old_keys: | |
if kwargs.get(key, None): | |
postprocessor[key] = kwargs.get(key) | |
warnings.warn( | |
f'{key} is deprecated, please specify ' | |
'it in postprocessor config dict. See ' | |
'https://github.com/open-mmlab/mmocr/pull/640 ' | |
'for details.', UserWarning) | |
BaseModule.__init__(self, init_cfg=init_cfg) | |
HeadMixin.__init__(self, loss, postprocessor) | |
assert isinstance(in_channels, int) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.downsample_ratio = downsample_ratio | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
self.out_conv = nn.Conv2d( | |
in_channels=self.in_channels, | |
out_channels=self.out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, inputs): | |
""" | |
Args: | |
inputs (Tensor): Shape :math:`(N, C_{in}, H, W)`, where | |
:math:`C_{in}` is ``in_channels``. :math:`H` and :math:`W` | |
should be the same as the input of backbone. | |
Returns: | |
Tensor: A tensor of shape :math:`(N, 5, H, W)`. | |
""" | |
outputs = self.out_conv(inputs) | |
return outputs | |