tomofi's picture
Add application file
2366e36
raw
history blame
2.9 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import torch.nn as nn
from mmcv.runner import BaseModule
from mmocr.models.builder import HEADS
from .head_mixin import HeadMixin
@HEADS.register_module()
class TextSnakeHead(HeadMixin, BaseModule):
"""The class for TextSnake head: TextSnake: A Flexible Representation for
Detecting Text of Arbitrary Shapes.
TextSnake: `A Flexible Representation for Detecting Text of Arbitrary
Shapes <https://arxiv.org/abs/1807.01544>`_.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
downsample_ratio (float): Downsample ratio.
loss (dict): Configuration dictionary for loss type.
postprocessor (dict): Config of postprocessor for TextSnake.
train_cfg, test_cfg: Depreciated.
init_cfg (dict or list[dict], optional): Initialization configs.
"""
def __init__(self,
in_channels,
out_channels=5,
downsample_ratio=1.0,
loss=dict(type='TextSnakeLoss'),
postprocessor=dict(
type='TextSnakePostprocessor', text_repr_type='poly'),
train_cfg=None,
test_cfg=None,
init_cfg=dict(
type='Normal',
override=dict(name='out_conv'),
mean=0,
std=0.01),
**kwargs):
old_keys = ['text_repr_type', 'decoding_type']
for key in old_keys:
if kwargs.get(key, None):
postprocessor[key] = kwargs.get(key)
warnings.warn(
f'{key} is deprecated, please specify '
'it in postprocessor config dict. See '
'https://github.com/open-mmlab/mmocr/pull/640 '
'for details.', UserWarning)
BaseModule.__init__(self, init_cfg=init_cfg)
HeadMixin.__init__(self, loss, postprocessor)
assert isinstance(in_channels, int)
self.in_channels = in_channels
self.out_channels = out_channels
self.downsample_ratio = downsample_ratio
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.out_conv = nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, inputs):
"""
Args:
inputs (Tensor): Shape :math:`(N, C_{in}, H, W)`, where
:math:`C_{in}` is ``in_channels``. :math:`H` and :math:`W`
should be the same as the input of backbone.
Returns:
Tensor: A tensor of shape :math:`(N, 5, H, W)`.
"""
outputs = self.out_conv(inputs)
return outputs