Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from mmdet.datasets.builder import DATASETS | |
import mmocr.utils as utils | |
from mmocr.datasets.ocr_dataset import OCRDataset | |
class OCRSegDataset(OCRDataset): | |
def pre_pipeline(self, results): | |
results['img_prefix'] = self.img_prefix | |
def _parse_anno_info(self, annotations): | |
"""Parse char boxes annotations. | |
Args: | |
annotations (list[dict]): Annotations of one image, where | |
each dict is for one character. | |
Returns: | |
dict: A dict containing the following keys: | |
- chars (list[str]): List of character strings. | |
- char_rects (list[list[float]]): List of char box, with each | |
in style of rectangle: [x_min, y_min, x_max, y_max]. | |
- char_quads (list[list[float]]): List of char box, with each | |
in style of quadrangle: [x1, y1, x2, y2, x3, y3, x4, y4]. | |
""" | |
assert utils.is_type_list(annotations, dict) | |
assert 'char_box' in annotations[0] | |
assert 'char_text' in annotations[0] | |
assert len(annotations[0]['char_box']) in [4, 8] | |
chars, char_rects, char_quads = [], [], [] | |
for ann in annotations: | |
char_box = ann['char_box'] | |
if len(char_box) == 4: | |
char_box_type = ann.get('char_box_type', 'xyxy') | |
if char_box_type == 'xyxy': | |
char_rects.append(char_box) | |
char_quads.append([ | |
char_box[0], char_box[1], char_box[2], char_box[1], | |
char_box[2], char_box[3], char_box[0], char_box[3] | |
]) | |
elif char_box_type == 'xywh': | |
x1, y1, w, h = char_box | |
x2 = x1 + w | |
y2 = y1 + h | |
char_rects.append([x1, y1, x2, y2]) | |
char_quads.append([x1, y1, x2, y1, x2, y2, x1, y2]) | |
else: | |
raise ValueError(f'invalid char_box_type {char_box_type}') | |
elif len(char_box) == 8: | |
x_list, y_list = [], [] | |
for i in range(4): | |
x_list.append(char_box[2 * i]) | |
y_list.append(char_box[2 * i + 1]) | |
x_max, x_min = max(x_list), min(x_list) | |
y_max, y_min = max(y_list), min(y_list) | |
char_rects.append([x_min, y_min, x_max, y_max]) | |
char_quads.append(char_box) | |
else: | |
raise Exception( | |
f'invalid num in char box: {len(char_box)} not in (4, 8)') | |
chars.append(ann['char_text']) | |
ann = dict(chars=chars, char_rects=char_rects, char_quads=char_quads) | |
return ann | |
def prepare_train_img(self, index): | |
"""Get training data and annotations from pipeline. | |
Args: | |
index (int): Index of data. | |
Returns: | |
dict: Training data and annotation after pipeline with new keys | |
introduced by pipeline. | |
""" | |
img_ann_info = self.data_infos[index] | |
img_info = { | |
'filename': img_ann_info['file_name'], | |
} | |
ann_info = self._parse_anno_info(img_ann_info['annotations']) | |
results = dict(img_info=img_info, ann_info=ann_info) | |
self.pre_pipeline(results) | |
return self.pipeline(results) | |