MMOCR / tests /test_dataset /test_detect_dataset.py
tomofi's picture
Add application file
2366e36
raw
history blame
2.55 kB
# Copyright (c) OpenMMLab. All rights reserved.
import json
import os.path as osp
import tempfile
import numpy as np
from mmocr.datasets.text_det_dataset import TextDetDataset
def _create_dummy_ann_file(ann_file):
ann_info1 = {
'file_name':
'sample1.jpg',
'height':
640,
'width':
640,
'annotations': [{
'iscrowd': 0,
'category_id': 1,
'bbox': [50, 70, 80, 100],
'segmentation': [[50, 70, 80, 70, 80, 100, 50, 100]]
}, {
'iscrowd':
1,
'category_id':
1,
'bbox': [120, 140, 200, 200],
'segmentation': [[120, 140, 200, 140, 200, 200, 120, 200]]
}]
}
with open(ann_file, 'w') as fw:
fw.write(json.dumps(ann_info1) + '\n')
def _create_dummy_loader():
loader = dict(
type='HardDiskLoader',
repeat=1,
parser=dict(
type='LineJsonParser',
keys=['file_name', 'height', 'width', 'annotations']))
return loader
def test_detect_dataset():
tmp_dir = tempfile.TemporaryDirectory()
# create dummy data
ann_file = osp.join(tmp_dir.name, 'fake_data.txt')
_create_dummy_ann_file(ann_file)
# test initialization
loader = _create_dummy_loader()
dataset = TextDetDataset(ann_file, loader, pipeline=[])
# test _parse_ann_info
img_ann_info = dataset.data_infos[0]
ann = dataset._parse_anno_info(img_ann_info['annotations'])
print(ann['bboxes'])
assert np.allclose(ann['bboxes'], [[50., 70., 80., 100.]])
assert np.allclose(ann['labels'], [1])
assert np.allclose(ann['bboxes_ignore'], [[120, 140, 200, 200]])
assert np.allclose(ann['masks'], [[[50, 70, 80, 70, 80, 100, 50, 100]]])
assert np.allclose(ann['masks_ignore'],
[[[120, 140, 200, 140, 200, 200, 120, 200]]])
tmp_dir.cleanup()
# test prepare_train_img
pipeline_results = dataset.prepare_train_img(0)
assert np.allclose(pipeline_results['bbox_fields'], [])
assert np.allclose(pipeline_results['mask_fields'], [])
assert np.allclose(pipeline_results['seg_fields'], [])
expect_img_info = {'filename': 'sample1.jpg', 'height': 640, 'width': 640}
assert pipeline_results['img_info'] == expect_img_info
# test evluation
metrics = 'hmean-iou'
results = [{'boundary_result': [[50, 70, 80, 70, 80, 100, 50, 100, 1]]}]
eval_res = dataset.evaluate(results, metrics)
assert eval_res['hmean-iou:hmean'] == 1