Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import json | |
import os.path as osp | |
import tempfile | |
import numpy as np | |
from mmocr.datasets.text_det_dataset import TextDetDataset | |
def _create_dummy_ann_file(ann_file): | |
ann_info1 = { | |
'file_name': | |
'sample1.jpg', | |
'height': | |
640, | |
'width': | |
640, | |
'annotations': [{ | |
'iscrowd': 0, | |
'category_id': 1, | |
'bbox': [50, 70, 80, 100], | |
'segmentation': [[50, 70, 80, 70, 80, 100, 50, 100]] | |
}, { | |
'iscrowd': | |
1, | |
'category_id': | |
1, | |
'bbox': [120, 140, 200, 200], | |
'segmentation': [[120, 140, 200, 140, 200, 200, 120, 200]] | |
}] | |
} | |
with open(ann_file, 'w') as fw: | |
fw.write(json.dumps(ann_info1) + '\n') | |
def _create_dummy_loader(): | |
loader = dict( | |
type='HardDiskLoader', | |
repeat=1, | |
parser=dict( | |
type='LineJsonParser', | |
keys=['file_name', 'height', 'width', 'annotations'])) | |
return loader | |
def test_detect_dataset(): | |
tmp_dir = tempfile.TemporaryDirectory() | |
# create dummy data | |
ann_file = osp.join(tmp_dir.name, 'fake_data.txt') | |
_create_dummy_ann_file(ann_file) | |
# test initialization | |
loader = _create_dummy_loader() | |
dataset = TextDetDataset(ann_file, loader, pipeline=[]) | |
# test _parse_ann_info | |
img_ann_info = dataset.data_infos[0] | |
ann = dataset._parse_anno_info(img_ann_info['annotations']) | |
print(ann['bboxes']) | |
assert np.allclose(ann['bboxes'], [[50., 70., 80., 100.]]) | |
assert np.allclose(ann['labels'], [1]) | |
assert np.allclose(ann['bboxes_ignore'], [[120, 140, 200, 200]]) | |
assert np.allclose(ann['masks'], [[[50, 70, 80, 70, 80, 100, 50, 100]]]) | |
assert np.allclose(ann['masks_ignore'], | |
[[[120, 140, 200, 140, 200, 200, 120, 200]]]) | |
tmp_dir.cleanup() | |
# test prepare_train_img | |
pipeline_results = dataset.prepare_train_img(0) | |
assert np.allclose(pipeline_results['bbox_fields'], []) | |
assert np.allclose(pipeline_results['mask_fields'], []) | |
assert np.allclose(pipeline_results['seg_fields'], []) | |
expect_img_info = {'filename': 'sample1.jpg', 'height': 640, 'width': 640} | |
assert pipeline_results['img_info'] == expect_img_info | |
# test evluation | |
metrics = 'hmean-iou' | |
results = [{'boundary_result': [[50, 70, 80, 70, 80, 100, 50, 100, 1]]}] | |
eval_res = dataset.evaluate(results, metrics) | |
assert eval_res['hmean-iou:hmean'] == 1 | |