MMOCR / mmocr /datasets /openset_kie_dataset.py
tomofi's picture
Add application file
2366e36
raw
history blame
12.1 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import numpy as np
import torch
from mmdet.datasets.builder import DATASETS
from mmocr.datasets import KIEDataset
@DATASETS.register_module()
class OpensetKIEDataset(KIEDataset):
"""Openset KIE classifies the nodes (i.e. text boxes) into bg/key/value
categories, and additionally learns key-value relationship among nodes.
Args:
ann_file (str): Annotation file path.
loader (dict): Dictionary to construct loader
to load annotation infos.
dict_file (str): Character dict file path.
img_prefix (str, optional): Image prefix to generate full
image path.
pipeline (list[dict]): Processing pipeline.
norm (float): Norm to map value from one range to another.
link_type (str): ``one-to-one`` | ``one-to-many`` |
``many-to-one`` | ``many-to-many``. For ``many-to-many``,
one key box can have many values and vice versa.
edge_thr (float): Score threshold for a valid edge.
test_mode (bool, optional): If True, try...except will
be turned off in __getitem__.
key_node_idx (int): Index of key in node classes.
value_node_idx (int): Index of value in node classes.
node_classes (int): Number of node classes.
"""
def __init__(self,
ann_file,
loader,
dict_file,
img_prefix='',
pipeline=None,
norm=10.,
link_type='one-to-one',
edge_thr=0.5,
test_mode=True,
key_node_idx=1,
value_node_idx=2,
node_classes=4):
super().__init__(ann_file, loader, dict_file, img_prefix, pipeline,
norm, False, test_mode)
assert link_type in [
'one-to-one', 'one-to-many', 'many-to-one', 'many-to-many', 'none'
]
self.link_type = link_type
self.data_dict = {x['file_name']: x for x in self.data_infos}
self.edge_thr = edge_thr
self.key_node_idx = key_node_idx
self.value_node_idx = value_node_idx
self.node_classes = node_classes
def pre_pipeline(self, results):
super().pre_pipeline(results)
results['ori_texts'] = results['ann_info']['ori_texts']
results['ori_boxes'] = results['ann_info']['ori_boxes']
def list_to_numpy(self, ann_infos):
results = super().list_to_numpy(ann_infos)
results.update(dict(ori_texts=ann_infos['texts']))
results.update(dict(ori_boxes=ann_infos['boxes']))
return results
def evaluate(self,
results,
metric='openset_f1',
metric_options=None,
**kwargs):
# Protect ``metric_options`` since it uses mutable value as default
metric_options = copy.deepcopy(metric_options)
metrics = metric if isinstance(metric, list) else [metric]
allowed_metrics = ['openset_f1']
for m in metrics:
if m not in allowed_metrics:
raise KeyError(f'metric {m} is not supported')
preds, gts = [], []
for result in results:
# data for preds
pred = self.decode_pred(result)
preds.append(pred)
# data for gts
gt = self.decode_gt(pred['filename'])
gts.append(gt)
return self.compute_openset_f1(preds, gts)
def _decode_pairs_gt(self, labels, edge_ids):
"""Find all pairs in gt.
The first index in the pair (n1, n2) is key.
"""
gt_pairs = []
for i, label in enumerate(labels):
if label == self.key_node_idx:
for j, edge_id in enumerate(edge_ids):
if edge_id == edge_ids[i] and labels[
j] == self.value_node_idx:
gt_pairs.append((i, j))
return gt_pairs
@staticmethod
def _decode_pairs_pred(nodes,
labels,
edges,
edge_thr=0.5,
link_type='one-to-one'):
"""Find all pairs in prediction.
The first index in the pair (n1, n2) is more likely to be a key
according to prediction in nodes.
"""
edges = torch.max(edges, edges.T)
if link_type in ['none', 'many-to-many']:
pair_inds = (edges > edge_thr).nonzero(as_tuple=True)
pred_pairs = [(n1.item(),
n2.item()) if nodes[n1, 1] > nodes[n1, 2] else
(n2.item(), n1.item()) for n1, n2 in zip(*pair_inds)
if n1 < n2]
pred_pairs = [(i, j) for i, j in pred_pairs
if labels[i] == 1 and labels[j] == 2]
else:
links = edges.clone()
links[links <= edge_thr] = -1
links[labels != 1, :] = -1
links[:, labels != 2] = -1
pred_pairs = []
while (links > -1).any():
i, j = np.unravel_index(torch.argmax(links), links.shape)
pred_pairs.append((i, j))
if link_type == 'one-to-one':
links[i, :] = -1
links[:, j] = -1
elif link_type == 'one-to-many':
links[:, j] = -1
elif link_type == 'many-to-one':
links[i, :] = -1
else:
raise ValueError(f'not supported link type {link_type}')
pairs_conf = [edges[i, j].item() for i, j in pred_pairs]
return pred_pairs, pairs_conf
def decode_pred(self, result):
"""Decode prediction.
Assemble boxes and predicted labels into bboxes, and convert edges into
matrix.
"""
filename = result['img_metas'][0]['ori_filename']
nodes = result['nodes'].cpu()
labels_conf, labels = torch.max(nodes, dim=-1)
num_nodes = nodes.size(0)
edges = result['edges'][:, -1].view(num_nodes, num_nodes).cpu()
annos = self.data_dict[filename]['annotations']
boxes = [x['box'] for x in annos]
texts = [x['text'] for x in annos]
bboxes = torch.Tensor(boxes)[:, [0, 1, 4, 5]]
bboxes = torch.cat([bboxes, labels[:, None].float()], -1)
pairs, pairs_conf = self._decode_pairs_pred(nodes, labels, edges,
self.edge_thr,
self.link_type)
pred = {
'filename': filename,
'boxes': boxes,
'bboxes': bboxes.tolist(),
'labels': labels.tolist(),
'labels_conf': labels_conf.tolist(),
'texts': texts,
'pairs': pairs,
'pairs_conf': pairs_conf
}
return pred
def decode_gt(self, filename):
"""Decode ground truth.
Assemble boxes and labels into bboxes.
"""
annos = self.data_dict[filename]['annotations']
labels = torch.Tensor([x['label'] for x in annos])
texts = [x['text'] for x in annos]
edge_ids = [x['edge'] for x in annos]
boxes = [x['box'] for x in annos]
bboxes = torch.Tensor(boxes)[:, [0, 1, 4, 5]]
bboxes = torch.cat([bboxes, labels[:, None].float()], -1)
pairs = self._decode_pairs_gt(labels, edge_ids)
gt = {
'filename': filename,
'boxes': boxes,
'bboxes': bboxes.tolist(),
'labels': labels.tolist(),
'labels_conf': [1. for _ in labels],
'texts': texts,
'pairs': pairs,
'pairs_conf': [1. for _ in pairs]
}
return gt
def compute_openset_f1(self, preds, gts):
"""Compute openset macro-f1 and micro-f1 score.
Args:
preds: (list[dict]): List of prediction results, including
keys: ``filename``, ``pairs``, etc.
gts: (list[dict]): List of ground-truth infos, including
keys: ``filename``, ``pairs``, etc.
Returns:
dict: Evaluation result with keys: ``node_openset_micro_f1``, \
``node_openset_macro_f1``, ``edge_openset_f1``.
"""
total_edge_hit_num, total_edge_gt_num, total_edge_pred_num = 0, 0, 0
total_node_hit_num, total_node_gt_num, total_node_pred_num = {}, {}, {}
node_inds = list(range(self.node_classes))
for node_idx in node_inds:
total_node_hit_num[node_idx] = 0
total_node_gt_num[node_idx] = 0
total_node_pred_num[node_idx] = 0
img_level_res = {}
for pred, gt in zip(preds, gts):
filename = pred['filename']
img_res = {}
# edge metric related
pairs_pred = pred['pairs']
pairs_gt = gt['pairs']
img_res['edge_hit_num'] = 0
for pair in pairs_gt:
if pair in pairs_pred:
img_res['edge_hit_num'] += 1
img_res['edge_recall'] = 1.0 * img_res['edge_hit_num'] / max(
1, len(pairs_gt))
img_res['edge_precision'] = 1.0 * img_res['edge_hit_num'] / max(
1, len(pairs_pred))
img_res['f1'] = 2 * img_res['edge_recall'] * img_res[
'edge_precision'] / max(
1, img_res['edge_recall'] + img_res['edge_precision'])
total_edge_hit_num += img_res['edge_hit_num']
total_edge_gt_num += len(pairs_gt)
total_edge_pred_num += len(pairs_pred)
# node metric related
nodes_pred = pred['labels']
nodes_gt = gt['labels']
for i, node_gt in enumerate(nodes_gt):
node_gt = int(node_gt)
total_node_gt_num[node_gt] += 1
if nodes_pred[i] == node_gt:
total_node_hit_num[node_gt] += 1
for node_pred in nodes_pred:
total_node_pred_num[node_pred] += 1
img_level_res[filename] = img_res
stats = {}
# edge f1
total_edge_recall = 1.0 * total_edge_hit_num / max(
1, total_edge_gt_num)
total_edge_precision = 1.0 * total_edge_hit_num / max(
1, total_edge_pred_num)
edge_f1 = 2 * total_edge_recall * total_edge_precision / max(
1, total_edge_recall + total_edge_precision)
stats = {'edge_openset_f1': edge_f1}
# node f1
cared_node_hit_num, cared_node_gt_num, cared_node_pred_num = 0, 0, 0
node_macro_metric = {}
for node_idx in node_inds:
if node_idx < 1 or node_idx > 2:
continue
cared_node_hit_num += total_node_hit_num[node_idx]
cared_node_gt_num += total_node_gt_num[node_idx]
cared_node_pred_num += total_node_pred_num[node_idx]
node_res = {}
node_res['recall'] = 1.0 * total_node_hit_num[node_idx] / max(
1, total_node_gt_num[node_idx])
node_res['precision'] = 1.0 * total_node_hit_num[node_idx] / max(
1, total_node_pred_num[node_idx])
node_res[
'f1'] = 2 * node_res['recall'] * node_res['precision'] / max(
1, node_res['recall'] + node_res['precision'])
node_macro_metric[node_idx] = node_res
node_micro_recall = 1.0 * cared_node_hit_num / max(
1, cared_node_gt_num)
node_micro_precision = 1.0 * cared_node_hit_num / max(
1, cared_node_pred_num)
node_micro_f1 = 2 * node_micro_recall * node_micro_precision / max(
1, node_micro_recall + node_micro_precision)
stats['node_openset_micro_f1'] = node_micro_f1
stats['node_openset_macro_f1'] = np.mean(
[v['f1'] for k, v in node_macro_metric.items()])
return stats