Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import numpy as np | |
import torch | |
from mmdet.datasets.builder import DATASETS | |
from mmocr.datasets import KIEDataset | |
class OpensetKIEDataset(KIEDataset): | |
"""Openset KIE classifies the nodes (i.e. text boxes) into bg/key/value | |
categories, and additionally learns key-value relationship among nodes. | |
Args: | |
ann_file (str): Annotation file path. | |
loader (dict): Dictionary to construct loader | |
to load annotation infos. | |
dict_file (str): Character dict file path. | |
img_prefix (str, optional): Image prefix to generate full | |
image path. | |
pipeline (list[dict]): Processing pipeline. | |
norm (float): Norm to map value from one range to another. | |
link_type (str): ``one-to-one`` | ``one-to-many`` | | |
``many-to-one`` | ``many-to-many``. For ``many-to-many``, | |
one key box can have many values and vice versa. | |
edge_thr (float): Score threshold for a valid edge. | |
test_mode (bool, optional): If True, try...except will | |
be turned off in __getitem__. | |
key_node_idx (int): Index of key in node classes. | |
value_node_idx (int): Index of value in node classes. | |
node_classes (int): Number of node classes. | |
""" | |
def __init__(self, | |
ann_file, | |
loader, | |
dict_file, | |
img_prefix='', | |
pipeline=None, | |
norm=10., | |
link_type='one-to-one', | |
edge_thr=0.5, | |
test_mode=True, | |
key_node_idx=1, | |
value_node_idx=2, | |
node_classes=4): | |
super().__init__(ann_file, loader, dict_file, img_prefix, pipeline, | |
norm, False, test_mode) | |
assert link_type in [ | |
'one-to-one', 'one-to-many', 'many-to-one', 'many-to-many', 'none' | |
] | |
self.link_type = link_type | |
self.data_dict = {x['file_name']: x for x in self.data_infos} | |
self.edge_thr = edge_thr | |
self.key_node_idx = key_node_idx | |
self.value_node_idx = value_node_idx | |
self.node_classes = node_classes | |
def pre_pipeline(self, results): | |
super().pre_pipeline(results) | |
results['ori_texts'] = results['ann_info']['ori_texts'] | |
results['ori_boxes'] = results['ann_info']['ori_boxes'] | |
def list_to_numpy(self, ann_infos): | |
results = super().list_to_numpy(ann_infos) | |
results.update(dict(ori_texts=ann_infos['texts'])) | |
results.update(dict(ori_boxes=ann_infos['boxes'])) | |
return results | |
def evaluate(self, | |
results, | |
metric='openset_f1', | |
metric_options=None, | |
**kwargs): | |
# Protect ``metric_options`` since it uses mutable value as default | |
metric_options = copy.deepcopy(metric_options) | |
metrics = metric if isinstance(metric, list) else [metric] | |
allowed_metrics = ['openset_f1'] | |
for m in metrics: | |
if m not in allowed_metrics: | |
raise KeyError(f'metric {m} is not supported') | |
preds, gts = [], [] | |
for result in results: | |
# data for preds | |
pred = self.decode_pred(result) | |
preds.append(pred) | |
# data for gts | |
gt = self.decode_gt(pred['filename']) | |
gts.append(gt) | |
return self.compute_openset_f1(preds, gts) | |
def _decode_pairs_gt(self, labels, edge_ids): | |
"""Find all pairs in gt. | |
The first index in the pair (n1, n2) is key. | |
""" | |
gt_pairs = [] | |
for i, label in enumerate(labels): | |
if label == self.key_node_idx: | |
for j, edge_id in enumerate(edge_ids): | |
if edge_id == edge_ids[i] and labels[ | |
j] == self.value_node_idx: | |
gt_pairs.append((i, j)) | |
return gt_pairs | |
def _decode_pairs_pred(nodes, | |
labels, | |
edges, | |
edge_thr=0.5, | |
link_type='one-to-one'): | |
"""Find all pairs in prediction. | |
The first index in the pair (n1, n2) is more likely to be a key | |
according to prediction in nodes. | |
""" | |
edges = torch.max(edges, edges.T) | |
if link_type in ['none', 'many-to-many']: | |
pair_inds = (edges > edge_thr).nonzero(as_tuple=True) | |
pred_pairs = [(n1.item(), | |
n2.item()) if nodes[n1, 1] > nodes[n1, 2] else | |
(n2.item(), n1.item()) for n1, n2 in zip(*pair_inds) | |
if n1 < n2] | |
pred_pairs = [(i, j) for i, j in pred_pairs | |
if labels[i] == 1 and labels[j] == 2] | |
else: | |
links = edges.clone() | |
links[links <= edge_thr] = -1 | |
links[labels != 1, :] = -1 | |
links[:, labels != 2] = -1 | |
pred_pairs = [] | |
while (links > -1).any(): | |
i, j = np.unravel_index(torch.argmax(links), links.shape) | |
pred_pairs.append((i, j)) | |
if link_type == 'one-to-one': | |
links[i, :] = -1 | |
links[:, j] = -1 | |
elif link_type == 'one-to-many': | |
links[:, j] = -1 | |
elif link_type == 'many-to-one': | |
links[i, :] = -1 | |
else: | |
raise ValueError(f'not supported link type {link_type}') | |
pairs_conf = [edges[i, j].item() for i, j in pred_pairs] | |
return pred_pairs, pairs_conf | |
def decode_pred(self, result): | |
"""Decode prediction. | |
Assemble boxes and predicted labels into bboxes, and convert edges into | |
matrix. | |
""" | |
filename = result['img_metas'][0]['ori_filename'] | |
nodes = result['nodes'].cpu() | |
labels_conf, labels = torch.max(nodes, dim=-1) | |
num_nodes = nodes.size(0) | |
edges = result['edges'][:, -1].view(num_nodes, num_nodes).cpu() | |
annos = self.data_dict[filename]['annotations'] | |
boxes = [x['box'] for x in annos] | |
texts = [x['text'] for x in annos] | |
bboxes = torch.Tensor(boxes)[:, [0, 1, 4, 5]] | |
bboxes = torch.cat([bboxes, labels[:, None].float()], -1) | |
pairs, pairs_conf = self._decode_pairs_pred(nodes, labels, edges, | |
self.edge_thr, | |
self.link_type) | |
pred = { | |
'filename': filename, | |
'boxes': boxes, | |
'bboxes': bboxes.tolist(), | |
'labels': labels.tolist(), | |
'labels_conf': labels_conf.tolist(), | |
'texts': texts, | |
'pairs': pairs, | |
'pairs_conf': pairs_conf | |
} | |
return pred | |
def decode_gt(self, filename): | |
"""Decode ground truth. | |
Assemble boxes and labels into bboxes. | |
""" | |
annos = self.data_dict[filename]['annotations'] | |
labels = torch.Tensor([x['label'] for x in annos]) | |
texts = [x['text'] for x in annos] | |
edge_ids = [x['edge'] for x in annos] | |
boxes = [x['box'] for x in annos] | |
bboxes = torch.Tensor(boxes)[:, [0, 1, 4, 5]] | |
bboxes = torch.cat([bboxes, labels[:, None].float()], -1) | |
pairs = self._decode_pairs_gt(labels, edge_ids) | |
gt = { | |
'filename': filename, | |
'boxes': boxes, | |
'bboxes': bboxes.tolist(), | |
'labels': labels.tolist(), | |
'labels_conf': [1. for _ in labels], | |
'texts': texts, | |
'pairs': pairs, | |
'pairs_conf': [1. for _ in pairs] | |
} | |
return gt | |
def compute_openset_f1(self, preds, gts): | |
"""Compute openset macro-f1 and micro-f1 score. | |
Args: | |
preds: (list[dict]): List of prediction results, including | |
keys: ``filename``, ``pairs``, etc. | |
gts: (list[dict]): List of ground-truth infos, including | |
keys: ``filename``, ``pairs``, etc. | |
Returns: | |
dict: Evaluation result with keys: ``node_openset_micro_f1``, \ | |
``node_openset_macro_f1``, ``edge_openset_f1``. | |
""" | |
total_edge_hit_num, total_edge_gt_num, total_edge_pred_num = 0, 0, 0 | |
total_node_hit_num, total_node_gt_num, total_node_pred_num = {}, {}, {} | |
node_inds = list(range(self.node_classes)) | |
for node_idx in node_inds: | |
total_node_hit_num[node_idx] = 0 | |
total_node_gt_num[node_idx] = 0 | |
total_node_pred_num[node_idx] = 0 | |
img_level_res = {} | |
for pred, gt in zip(preds, gts): | |
filename = pred['filename'] | |
img_res = {} | |
# edge metric related | |
pairs_pred = pred['pairs'] | |
pairs_gt = gt['pairs'] | |
img_res['edge_hit_num'] = 0 | |
for pair in pairs_gt: | |
if pair in pairs_pred: | |
img_res['edge_hit_num'] += 1 | |
img_res['edge_recall'] = 1.0 * img_res['edge_hit_num'] / max( | |
1, len(pairs_gt)) | |
img_res['edge_precision'] = 1.0 * img_res['edge_hit_num'] / max( | |
1, len(pairs_pred)) | |
img_res['f1'] = 2 * img_res['edge_recall'] * img_res[ | |
'edge_precision'] / max( | |
1, img_res['edge_recall'] + img_res['edge_precision']) | |
total_edge_hit_num += img_res['edge_hit_num'] | |
total_edge_gt_num += len(pairs_gt) | |
total_edge_pred_num += len(pairs_pred) | |
# node metric related | |
nodes_pred = pred['labels'] | |
nodes_gt = gt['labels'] | |
for i, node_gt in enumerate(nodes_gt): | |
node_gt = int(node_gt) | |
total_node_gt_num[node_gt] += 1 | |
if nodes_pred[i] == node_gt: | |
total_node_hit_num[node_gt] += 1 | |
for node_pred in nodes_pred: | |
total_node_pred_num[node_pred] += 1 | |
img_level_res[filename] = img_res | |
stats = {} | |
# edge f1 | |
total_edge_recall = 1.0 * total_edge_hit_num / max( | |
1, total_edge_gt_num) | |
total_edge_precision = 1.0 * total_edge_hit_num / max( | |
1, total_edge_pred_num) | |
edge_f1 = 2 * total_edge_recall * total_edge_precision / max( | |
1, total_edge_recall + total_edge_precision) | |
stats = {'edge_openset_f1': edge_f1} | |
# node f1 | |
cared_node_hit_num, cared_node_gt_num, cared_node_pred_num = 0, 0, 0 | |
node_macro_metric = {} | |
for node_idx in node_inds: | |
if node_idx < 1 or node_idx > 2: | |
continue | |
cared_node_hit_num += total_node_hit_num[node_idx] | |
cared_node_gt_num += total_node_gt_num[node_idx] | |
cared_node_pred_num += total_node_pred_num[node_idx] | |
node_res = {} | |
node_res['recall'] = 1.0 * total_node_hit_num[node_idx] / max( | |
1, total_node_gt_num[node_idx]) | |
node_res['precision'] = 1.0 * total_node_hit_num[node_idx] / max( | |
1, total_node_pred_num[node_idx]) | |
node_res[ | |
'f1'] = 2 * node_res['recall'] * node_res['precision'] / max( | |
1, node_res['recall'] + node_res['precision']) | |
node_macro_metric[node_idx] = node_res | |
node_micro_recall = 1.0 * cared_node_hit_num / max( | |
1, cared_node_gt_num) | |
node_micro_precision = 1.0 * cared_node_hit_num / max( | |
1, cared_node_pred_num) | |
node_micro_f1 = 2 * node_micro_recall * node_micro_precision / max( | |
1, node_micro_recall + node_micro_precision) | |
stats['node_openset_micro_f1'] = node_micro_f1 | |
stats['node_openset_macro_f1'] = np.mean( | |
[v['f1'] for k, v in node_macro_metric.items()]) | |
return stats | |