Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import warnings | |
import mmcv | |
import numpy as np | |
import torch | |
from mmdet.datasets import replace_ImageToTensor | |
from mmocr.utils import is_2dlist, is_type_list | |
def update_pipeline(cfg, idx=None): | |
if idx is None: | |
if cfg.pipeline is not None: | |
cfg.pipeline = replace_ImageToTensor(cfg.pipeline) | |
else: | |
cfg.pipeline[idx] = replace_ImageToTensor(cfg.pipeline[idx]) | |
def replace_image_to_tensor(cfg, set_types=None): | |
"""Replace 'ImageToTensor' to 'DefaultFormatBundle'.""" | |
assert set_types is None or isinstance(set_types, list) | |
if set_types is None: | |
set_types = ['val', 'test'] | |
cfg = copy.deepcopy(cfg) | |
for set_type in set_types: | |
assert set_type in ['val', 'test'] | |
uniform_pipeline = cfg.data[set_type].get('pipeline', None) | |
if is_type_list(uniform_pipeline, dict): | |
update_pipeline(cfg.data[set_type]) | |
elif is_2dlist(uniform_pipeline): | |
for idx, _ in enumerate(uniform_pipeline): | |
update_pipeline(cfg.data[set_type], idx) | |
for dataset in cfg.data[set_type].get('datasets', []): | |
if isinstance(dataset, list): | |
for each_dataset in dataset: | |
update_pipeline(each_dataset) | |
else: | |
update_pipeline(dataset) | |
return cfg | |
def update_pipeline_recog(cfg, idx=None): | |
warning_msg = 'Remove "MultiRotateAugOCR" to support batch ' + \ | |
'inference since samples_per_gpu > 1.' | |
if idx is None: | |
if cfg.get('pipeline', | |
None) and cfg.pipeline[1].type == 'MultiRotateAugOCR': | |
warnings.warn(warning_msg) | |
cfg.pipeline = [cfg.pipeline[0], *cfg.pipeline[1].transforms] | |
else: | |
if cfg[idx][1].type == 'MultiRotateAugOCR': | |
warnings.warn(warning_msg) | |
cfg[idx] = [cfg[idx][0], *cfg[idx][1].transforms] | |
def disable_text_recog_aug_test(cfg, set_types=None): | |
"""Remove aug_test from test pipeline for text recognition. | |
Args: | |
cfg (mmcv.Config): Input config. | |
set_types (list[str]): Type of dataset source. Should be | |
None or sublist of ['test', 'val']. | |
""" | |
assert set_types is None or isinstance(set_types, list) | |
if set_types is None: | |
set_types = ['val', 'test'] | |
cfg = copy.deepcopy(cfg) | |
warnings.simplefilter('once') | |
for set_type in set_types: | |
assert set_type in ['val', 'test'] | |
dataset_type = cfg.data[set_type].type | |
if dataset_type not in [ | |
'ConcatDataset', 'UniformConcatDataset', 'OCRDataset', | |
'OCRSegDataset' | |
]: | |
continue | |
uniform_pipeline = cfg.data[set_type].get('pipeline', None) | |
if is_type_list(uniform_pipeline, dict): | |
update_pipeline_recog(cfg.data[set_type]) | |
elif is_2dlist(uniform_pipeline): | |
for idx, _ in enumerate(uniform_pipeline): | |
update_pipeline_recog(cfg.data[set_type].pipeline, idx) | |
for dataset in cfg.data[set_type].get('datasets', []): | |
if isinstance(dataset, list): | |
for each_dataset in dataset: | |
update_pipeline_recog(each_dataset) | |
else: | |
update_pipeline_recog(dataset) | |
return cfg | |
def tensor2grayimgs(tensor, mean=(127, ), std=(127, ), **kwargs): | |
"""Convert tensor to 1-channel gray images. | |
Args: | |
tensor (torch.Tensor): Tensor that contains multiple images, shape ( | |
N, C, H, W). | |
mean (tuple[float], optional): Mean of images. Defaults to (127). | |
std (tuple[float], optional): Standard deviation of images. | |
Defaults to (127). | |
Returns: | |
list[np.ndarray]: A list that contains multiple images. | |
""" | |
assert torch.is_tensor(tensor) and tensor.ndim == 4 | |
assert tensor.size(1) == len(mean) == len(std) == 1 | |
num_imgs = tensor.size(0) | |
mean = np.array(mean, dtype=np.float32) | |
std = np.array(std, dtype=np.float32) | |
imgs = [] | |
for img_id in range(num_imgs): | |
img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0) | |
img = mmcv.imdenormalize(img, mean, std, to_bgr=False).astype(np.uint8) | |
imgs.append(np.ascontiguousarray(img)) | |
return imgs | |