Spaces:
Runtime error
Runtime error
_base_ = [ | |
'../../_base_/default_runtime.py', | |
'../../_base_/schedules/schedule_adam_step_5e.py' | |
] | |
dict_file = 'data/chineseocr/labels/dict_printed_chinese_english_digits.txt' | |
label_convertor = dict( | |
type='AttnConvertor', dict_file=dict_file, with_unknown=True) | |
model = dict( | |
type='SARNet', | |
backbone=dict(type='ResNet31OCR'), | |
encoder=dict( | |
type='SAREncoder', | |
enc_bi_rnn=False, | |
enc_do_rnn=0.1, | |
enc_gru=False, | |
), | |
decoder=dict( | |
type='ParallelSARDecoder', | |
enc_bi_rnn=False, | |
dec_bi_rnn=False, | |
dec_do_rnn=0, | |
dec_gru=False, | |
pred_dropout=0.1, | |
d_k=512, | |
pred_concat=True), | |
loss=dict(type='SARLoss'), | |
label_convertor=label_convertor, | |
max_seq_len=30) | |
img_norm_cfg = dict(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='ResizeOCR', | |
height=48, | |
min_width=48, | |
max_width=256, | |
keep_aspect_ratio=True, | |
width_downsample_ratio=0.25), | |
dict(type='ToTensorOCR'), | |
dict(type='NormalizeOCR', **img_norm_cfg), | |
dict( | |
type='Collect', | |
keys=['img'], | |
meta_keys=[ | |
'filename', 'ori_shape', 'resize_shape', 'text', 'valid_ratio' | |
]), | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='MultiRotateAugOCR', | |
rotate_degrees=[0, 90, 270], | |
transforms=[ | |
dict( | |
type='ResizeOCR', | |
height=48, | |
min_width=48, | |
max_width=256, | |
keep_aspect_ratio=True, | |
width_downsample_ratio=0.25), | |
dict(type='ToTensorOCR'), | |
dict(type='NormalizeOCR', **img_norm_cfg), | |
dict( | |
type='Collect', | |
keys=['img'], | |
meta_keys=[ | |
'filename', 'ori_shape', 'resize_shape', 'valid_ratio' | |
]), | |
]) | |
] | |
dataset_type = 'OCRDataset' | |
train_prefix = 'data/chinese/' | |
train_ann_file = train_prefix + 'labels/train.txt' | |
train = dict( | |
type=dataset_type, | |
img_prefix=train_prefix, | |
ann_file=train_ann_file, | |
loader=dict( | |
type='HardDiskLoader', | |
repeat=1, | |
parser=dict( | |
type='LineStrParser', | |
keys=['filename', 'text'], | |
keys_idx=[0, 1], | |
separator=' ')), | |
pipeline=None, | |
test_mode=False) | |
test_prefix = 'data/chineseocr/' | |
test_ann_file = test_prefix + 'labels/test.txt' | |
test = dict( | |
type=dataset_type, | |
img_prefix=test_prefix, | |
ann_file=test_ann_file, | |
loader=dict( | |
type='HardDiskLoader', | |
repeat=1, | |
parser=dict( | |
type='LineStrParser', | |
keys=['filename', 'text'], | |
keys_idx=[0, 1], | |
separator=' ')), | |
pipeline=None, | |
test_mode=False) | |
data = dict( | |
samples_per_gpu=40, | |
workers_per_gpu=2, | |
val_dataloader=dict(samples_per_gpu=1), | |
test_dataloader=dict(samples_per_gpu=1), | |
train=dict( | |
type='UniformConcatDataset', datasets=[train], | |
pipeline=train_pipeline), | |
val=dict( | |
type='UniformConcatDataset', datasets=[test], pipeline=test_pipeline), | |
test=dict( | |
type='UniformConcatDataset', datasets=[test], pipeline=test_pipeline)) | |
evaluation = dict(interval=1, metric='acc') | |