Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
|
6 |
+
import hopsworks
|
7 |
+
import joblib
|
8 |
+
|
9 |
+
project = hopsworks.login()
|
10 |
+
fs = project.get_feature_store()
|
11 |
+
|
12 |
+
|
13 |
+
mr = project.get_model_registry()
|
14 |
+
model = mr.get_model("titanic_modal", version=1)
|
15 |
+
model_dir = model.download()
|
16 |
+
model = joblib.load(model_dir + "/titanic_model.pkl")
|
17 |
+
|
18 |
+
|
19 |
+
def titanic(sex, age, sibsp, parch, fare, embarked, pclass): #check if the order is the same in the feature hopsworks
|
20 |
+
input_list = []
|
21 |
+
input_list.append(sex)
|
22 |
+
input_list.append(age)
|
23 |
+
input_list.append(sibsp)
|
24 |
+
input_list.append(parch)
|
25 |
+
input_list.append(fare)
|
26 |
+
if embarked == 1:
|
27 |
+
input_list.append(1)
|
28 |
+
input_list.append(0)
|
29 |
+
input_list.append(0)
|
30 |
+
elif embarked == 2:
|
31 |
+
input_list.append(0)
|
32 |
+
input_list.append(1)
|
33 |
+
input_list.append(0)
|
34 |
+
else:
|
35 |
+
input_list.append(0)
|
36 |
+
input_list.append(0)
|
37 |
+
input_list.append(1)
|
38 |
+
|
39 |
+
if pclass == 1:
|
40 |
+
input_list.append(1)
|
41 |
+
input_list.append(0)
|
42 |
+
input_list.append(0)
|
43 |
+
elif pclass == 2:
|
44 |
+
input_list.append(0)
|
45 |
+
input_list.append(1)
|
46 |
+
input_list.append(0)
|
47 |
+
else:
|
48 |
+
input_list.append(0)
|
49 |
+
input_list.append(0)
|
50 |
+
input_list.append(1)
|
51 |
+
|
52 |
+
# 'res' is a list of predictions returned as the label.
|
53 |
+
res = model.predict(np.asarray(input_list).reshape(1, -1))
|
54 |
+
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
|
55 |
+
# the first element.
|
56 |
+
if res[0] == 1:
|
57 |
+
image_url = "https://i.ibb.co/0X0JTcx/survive.jpg"
|
58 |
+
else:
|
59 |
+
image_url = "https://i.ibb.co/C8SdRn2/drowning.jpg"
|
60 |
+
img = Image.open(requests.get(image_url, stream=True).raw)
|
61 |
+
return img
|
62 |
+
#return res[0]
|
63 |
+
|
64 |
+
demo = gr.Interface(
|
65 |
+
fn=titanic,
|
66 |
+
title="Titanic Predictive Analytics",
|
67 |
+
description="Experiment with titanic dataset to predicte if a passenger is survived or not",
|
68 |
+
allow_flagging="never",
|
69 |
+
inputs=[
|
70 |
+
gr.inputs.Number(default=1.0, label="sex"),
|
71 |
+
gr.inputs.Number(default=1.0, label="age"),
|
72 |
+
gr.inputs.Number(default=1.0, label="sibsp"),
|
73 |
+
gr.inputs.Number(default=1.0, label="parch"),
|
74 |
+
gr.inputs.Number(default=1.0, label="fare"),
|
75 |
+
gr.inputs.Number(default=1.0, label="embarked"),
|
76 |
+
gr.inputs.Number(default=1.0, label="pclass"),
|
77 |
+
],
|
78 |
+
outputs=gr.Image(type="pil"))
|
79 |
+
#outputs = "number"
|
80 |
+
demo.launch(debug=True)
|