Spaces:
Sleeping
Sleeping
""" CLIP Model | |
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. | |
""" | |
from dataclasses import dataclass | |
import logging | |
import math | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.utils.checkpoint import checkpoint | |
from .hf_model import HFTextEncoder | |
from .modified_resnet import ModifiedResNet | |
from .timm_model import TimmModel | |
from .transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer | |
from .utils import to_2tuple | |
class CLIPVisionCfg: | |
layers: Union[Tuple[int, int, int, int], int] = 12 | |
width: int = 768 | |
head_width: int = 64 | |
mlp_ratio: float = 4.0 | |
patch_size: int = 16 | |
image_size: Union[Tuple[int, int], int] = 224 | |
ls_init_value: Optional[float] = None # layer scale initial value | |
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results | |
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580) | |
timm_model_name: str = None # a valid model name overrides layers, width, patch_size | |
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model | |
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') | |
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '') | |
timm_proj_bias: bool = False # enable bias final projection | |
class CLIPTextCfg: | |
context_length: int = 77 | |
vocab_size: int = 49408 | |
width: int = 512 | |
heads: int = 8 | |
layers: int = 12 | |
ls_init_value: Optional[float] = None # layer scale initial value | |
hf_model_name: str = None | |
hf_tokenizer_name: str = None | |
hf_model_pretrained: bool = True | |
proj: str = 'mlp' | |
pooler_type: str = 'mean_pooler' | |
def get_cast_dtype(precision: str): | |
cast_dtype = None | |
if precision == 'bf16': | |
cast_dtype = torch.bfloat16 | |
elif precision == 'fp16': | |
cast_dtype = torch.float16 | |
return cast_dtype | |
def _build_vision_tower( | |
embed_dim: int, | |
vision_cfg: CLIPVisionCfg, | |
quick_gelu: bool = False, | |
cast_dtype: Optional[torch.dtype] = None | |
): | |
if isinstance(vision_cfg, dict): | |
vision_cfg = CLIPVisionCfg(**vision_cfg) | |
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more | |
# memory efficient in recent PyTorch releases (>= 1.10). | |
# NOTE: timm models always use native GELU regardless of quick_gelu flag. | |
act_layer = QuickGELU if quick_gelu else nn.GELU | |
if vision_cfg.timm_model_name: | |
visual = TimmModel( | |
vision_cfg.timm_model_name, | |
pretrained=vision_cfg.timm_model_pretrained, | |
pool=vision_cfg.timm_pool, | |
proj=vision_cfg.timm_proj, | |
proj_bias=vision_cfg.timm_proj_bias, | |
embed_dim=embed_dim, | |
image_size=vision_cfg.image_size | |
) | |
act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models | |
elif isinstance(vision_cfg.layers, (tuple, list)): | |
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width | |
visual = ModifiedResNet( | |
layers=vision_cfg.layers, | |
output_dim=embed_dim, | |
heads=vision_heads, | |
image_size=vision_cfg.image_size, | |
width=vision_cfg.width | |
) | |
else: | |
vision_heads = vision_cfg.width // vision_cfg.head_width | |
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm | |
visual = VisionTransformer( | |
image_size=vision_cfg.image_size, | |
patch_size=vision_cfg.patch_size, | |
width=vision_cfg.width, | |
layers=vision_cfg.layers, | |
heads=vision_heads, | |
mlp_ratio=vision_cfg.mlp_ratio, | |
ls_init_value=vision_cfg.ls_init_value, | |
patch_dropout=vision_cfg.patch_dropout, | |
global_average_pool=vision_cfg.global_average_pool, | |
output_dim=embed_dim, | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
) | |
return visual | |
def _build_text_tower( | |
embed_dim: int, | |
text_cfg: CLIPTextCfg, | |
quick_gelu: bool = False, | |
cast_dtype: Optional[torch.dtype] = None, | |
): | |
if isinstance(text_cfg, dict): | |
text_cfg = CLIPTextCfg(**text_cfg) | |
if text_cfg.hf_model_name: | |
text = HFTextEncoder( | |
text_cfg.hf_model_name, | |
output_dim=embed_dim, | |
proj=text_cfg.proj, | |
pooler_type=text_cfg.pooler_type, | |
pretrained=text_cfg.hf_model_pretrained | |
) | |
else: | |
act_layer = QuickGELU if quick_gelu else nn.GELU | |
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm | |
text = TextTransformer( | |
context_length=text_cfg.context_length, | |
vocab_size=text_cfg.vocab_size, | |
width=text_cfg.width, | |
heads=text_cfg.heads, | |
layers=text_cfg.layers, | |
ls_init_value=text_cfg.ls_init_value, | |
output_dim=embed_dim, | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
) | |
return text | |
class CLIP(nn.Module): | |
def __init__( | |
self, | |
embed_dim: int, | |
vision_cfg: CLIPVisionCfg, | |
text_cfg: CLIPTextCfg, | |
quick_gelu: bool = False, | |
cast_dtype: Optional[torch.dtype] = None, | |
): | |
super().__init__() | |
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) | |
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) | |
self.transformer = text.transformer | |
self.vocab_size = text.vocab_size | |
self.token_embedding = text.token_embedding | |
self.positional_embedding = text.positional_embedding | |
self.ln_final = text.ln_final | |
self.text_projection = text.text_projection | |
self.register_buffer('attn_mask', text.attn_mask, persistent=False) | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): | |
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991 | |
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) | |
def set_grad_checkpointing(self, enable=True): | |
self.visual.set_grad_checkpointing(enable) | |
self.transformer.grad_checkpointing = enable | |
def encode_image(self, image, normalize: bool = False): | |
features = self.visual(image) | |
return F.normalize(features, dim=-1) if normalize else features | |
def encode_text(self, text, normalize: bool = False): | |
cast_dtype = self.transformer.get_cast_dtype() | |
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] | |
x = x + self.positional_embedding.to(cast_dtype) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x, attn_mask=self.attn_mask) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection | |
return F.normalize(x, dim=-1) if normalize else x | |
def forward(self, image, text): | |
image_features = self.encode_image(image, normalize=True) | |
text_features = self.encode_text(text, normalize=True) | |
return image_features, text_features, self.logit_scale.exp() | |
def encode_text_embedding(self, text_embedding, ids, avg_text=False): | |
cast_dtype = self.transformer.get_cast_dtype() | |
x = text_embedding + self.positional_embedding.to(cast_dtype) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x, attn_mask=self.attn_mask) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_final(x) | |
# x.shape = [batch_size, n_ctx, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
if avg_text: | |
x = x[torch.arange(x.shape[0]), :ids.argmax(dim=-1)] | |
x[:, 1:-1] | |
x = x.mean(dim=1) @ self.text_projection | |
else: | |
x = x[torch.arange(x.shape[0]), ids.argmax(dim=-1)] @ self.text_projection | |
return x | |
def forward_text_embedding(self, embeddings, ids, image_features, avg_text=False, return_feature=False): | |
text_features = self.encode_text_embedding(embeddings, ids, avg_text=avg_text) | |
if return_feature: | |
return text_features | |
# normalized features | |
image_features = image_features / image_features.norm(dim=1, keepdim=True) | |
text_features = text_features / text_features.norm(dim=1, keepdim=True) | |
# cosine similarity as logits | |
# logit_scale = self.logit_scale.exp() | |
logits_per_image = image_features @ text_features.t() | |
logits_per_text = logits_per_image.t() | |
# shape = [global_batch_size, global_batch_size] | |
return logits_per_image, logits_per_text | |
class CustomTextCLIP(nn.Module): | |
def __init__( | |
self, | |
embed_dim: int, | |
vision_cfg: CLIPVisionCfg, | |
text_cfg: CLIPTextCfg, | |
quick_gelu: bool = False, | |
cast_dtype: Optional[torch.dtype] = None, | |
): | |
super().__init__() | |
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) | |
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): | |
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991 | |
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) | |
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True): | |
self.text.lock(unlocked_layers, freeze_layer_norm) | |
def set_grad_checkpointing(self, enable=True): | |
self.visual.set_grad_checkpointing(enable) | |
self.text.set_grad_checkpointing(enable) | |
def encode_image(self, image, normalize: bool = False): | |
features = self.visual(image) | |
return F.normalize(features, dim=-1) if normalize else features | |
def encode_text(self, text, normalize: bool = False): | |
features = self.text(text) | |
return F.normalize(features, dim=-1) if normalize else features | |
def forward(self, image, text): | |
image_features = self.encode_image(image, normalize=True) | |
text_features = self.encode_text(text, normalize=True) | |
return image_features, text_features, self.logit_scale.exp() | |
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16): | |
"""Convert applicable model parameters to low-precision (bf16 or fp16)""" | |
def _convert_weights(l): | |
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |
l.weight.data = l.weight.data.to(dtype) | |
if l.bias is not None: | |
l.bias.data = l.bias.data.to(dtype) | |
if isinstance(l, (nn.MultiheadAttention, Attention)): | |
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: | |
tensor = getattr(l, attr) | |
if tensor is not None: | |
tensor.data = tensor.data.to(dtype) | |
for name in ["text_projection", "proj"]: | |
if hasattr(l, name): | |
attr = getattr(l, name) | |
if attr is not None: | |
attr.data = attr.data.to(dtype) | |
model.apply(_convert_weights) | |
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat | |
# used to maintain checkpoint compatibility | |
def convert_to_custom_text_state_dict(state_dict: dict): | |
if 'text_projection' in state_dict: | |
# old format state_dict, move text tower -> .text | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
if any(k.startswith(p) for p in ( | |
'text_projection', | |
'positional_embedding', | |
'token_embedding', | |
'transformer', | |
'ln_final', | |
)): | |
k = 'text.' + k | |
new_state_dict[k] = v | |
return new_state_dict | |
return state_dict | |
def build_model_from_openai_state_dict( | |
state_dict: dict, | |
quick_gelu=True, | |
cast_dtype=torch.float16, | |
): | |
vit = "visual.proj" in state_dict | |
if vit: | |
vision_width = state_dict["visual.conv1.weight"].shape[0] | |
vision_layers = len( | |
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) | |
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] | |
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) | |
image_size = vision_patch_size * grid_size | |
else: | |
counts: list = [ | |
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] | |
vision_layers = tuple(counts) | |
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] | |
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) | |
vision_patch_size = None | |
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] | |
image_size = output_width * 32 | |
embed_dim = state_dict["text_projection"].shape[1] | |
context_length = state_dict["positional_embedding"].shape[0] | |
vocab_size = state_dict["token_embedding.weight"].shape[0] | |
transformer_width = state_dict["ln_final.weight"].shape[0] | |
transformer_heads = transformer_width // 64 | |
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) | |
vision_cfg = CLIPVisionCfg( | |
layers=vision_layers, | |
width=vision_width, | |
patch_size=vision_patch_size, | |
image_size=image_size, | |
) | |
text_cfg = CLIPTextCfg( | |
context_length=context_length, | |
vocab_size=vocab_size, | |
width=transformer_width, | |
heads=transformer_heads, | |
layers=transformer_layers | |
) | |
model = CLIP( | |
embed_dim, | |
vision_cfg=vision_cfg, | |
text_cfg=text_cfg, | |
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU | |
cast_dtype=cast_dtype, | |
) | |
for key in ["input_resolution", "context_length", "vocab_size"]: | |
state_dict.pop(key, None) | |
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16 | |
model.load_state_dict(state_dict) | |
return model.eval() | |
def trace_model(model, batch_size=256, device=torch.device('cpu')): | |
model.eval() | |
image_size = model.visual.image_size | |
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) | |
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device) | |
model = torch.jit.trace_module( | |
model, | |
inputs=dict( | |
forward=(example_images, example_text), | |
encode_text=(example_text,), | |
encode_image=(example_images,) | |
)) | |
model.visual.image_size = image_size | |
return model | |
def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): | |
# Rescale the grid of position embeddings when loading from state_dict | |
old_pos_embed = state_dict.get('visual.positional_embedding', None) | |
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): | |
return | |
grid_size = to_2tuple(model.visual.grid_size) | |
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) | |
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens | |
if new_seq_len == old_pos_embed.shape[0]: | |
return | |
if extra_tokens: | |
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] | |
else: | |
pos_emb_tok, pos_emb_img = None, old_pos_embed | |
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) | |
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) | |
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) | |
pos_emb_img = F.interpolate( | |
pos_emb_img, | |
size=grid_size, | |
mode=interpolation, | |
align_corners=True, | |
) | |
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] | |
if pos_emb_tok is not None: | |
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) | |
else: | |
new_pos_embed = pos_emb_img | |
state_dict['visual.positional_embedding'] = new_pos_embed | |