tombetthauser's picture
Add beta tab
6b22177
raw
history blame
14.5 kB
#@title Prepare the Concepts Library to be used
import requests
import os
import gradio as gr
import wget
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
from huggingface_hub import HfApi
from transformers import CLIPTextModel, CLIPTokenizer
import html
community_icon_html = ""
loading_icon_html = ""
share_js = ""
api = HfApi()
models_list = api.list_models(author="sd-concepts-library", sort="likes", direction=-1)
models = []
my_token = os.environ['api_key']
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", revision="fp16", torch_dtype=torch.float16, use_auth_token=my_token).to("cuda")
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
_old_token = token
# separate token and the embeds
trained_token = list(loaded_learned_embeds.keys())[0]
embeds = loaded_learned_embeds[trained_token]
# cast to dtype of text_encoder
dtype = text_encoder.get_input_embeddings().weight.dtype
# add the token in tokenizer
token = token if token is not None else trained_token
num_added_tokens = tokenizer.add_tokens(token)
i = 1
while(num_added_tokens == 0):
token = f"{token[:-1]}-{i}>"
num_added_tokens = tokenizer.add_tokens(token)
i+=1
# resize the token embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
# get the id for the token and assign the embeds
token_id = tokenizer.convert_tokens_to_ids(token)
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
return token
ahx_model_list = [model for model in models_list if "ahx" in model.modelId]
ahx_dropdown_list = [model for model in models_list if "ahx-model" in model.modelId]
for model in ahx_model_list:
model_content = {}
model_id = model.modelId
model_content["id"] = model_id
embeds_url = f"https://huggingface.co/{model_id}/resolve/main/learned_embeds.bin"
os.makedirs(model_id,exist_ok = True)
if not os.path.exists(f"{model_id}/learned_embeds.bin"):
try:
wget.download(embeds_url, out=model_id)
except:
continue
token_identifier = f"https://huggingface.co/{model_id}/raw/main/token_identifier.txt"
response = requests.get(token_identifier)
token_name = response.text
concept_type = f"https://huggingface.co/{model_id}/raw/main/type_of_concept.txt"
response = requests.get(concept_type)
concept_name = response.text
model_content["concept_type"] = concept_name
images = []
for i in range(4):
url = f"https://huggingface.co/{model_id}/resolve/main/concept_images/{i}.jpeg"
image_download = requests.get(url)
url_code = image_download.status_code
if(url_code == 200):
file = open(f"{model_id}/{i}.jpeg", "wb") ## Creates the file for image
file.write(image_download.content) ## Saves file content
file.close()
images.append(f"{model_id}/{i}.jpeg")
model_content["images"] = images
#if token cannot be loaded, skip it
try:
learned_token = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", pipe.text_encoder, pipe.tokenizer, token_name)
except:
continue
model_content["token"] = learned_token
models.append(model_content)
models.append(model_content)
# -----------------------------------------------------------------------------------------------
#@title Dropdown Prompt Tab
model_tags = [model.modelId.split("/")[1] for model in ahx_model_list]
model_tags.sort()
import random
#@title Gradio Concept Loader
DROPDOWNS = {}
for model in model_tags:
if model != "ahx-model-1" and model != "ahx-model-2":
DROPDOWNS[model] = f" in the style of <{model}>"
# def image_prompt(prompt, dropdown, guidance, steps, seed, height, width):
def image_prompt(prompt, guidance, steps, seed, height, width):
# prompt = prompt + DROPDOWNS[dropdown]
square_pixels = height * width
if square_pixels > 640000:
height = 640000 // width
generator = torch.Generator(device="cuda").manual_seed(int(seed))
return (
pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=int((height // 8) * 8), width=int((width // 8) * 8)).images[0],
f"prompt = '{prompt}'\nseed = {int(seed)}\nguidance_scale = {guidance}\ninference steps = {steps}\nheight = {int((height // 8) * 8)}\nwidth = {int((width // 8) * 8)}"
)
def default_guidance():
return 7.5
def default_steps():
return 30
def default_pixel():
return 768
def random_seed():
return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615
with gr.Blocks(css=".gradio-container {max-width: 650px}") as dropdown_tab:
gr.Markdown('''
# πŸ§‘β€πŸš€ Advanced Concept Loader
This tool allows you to run your own text prompts into fine-tuned artist concepts with individual parameter controls. Text prompts need to manually include artist concept / model tokens, see the examples below. The seed controls the static starting.
<br>
<br>
The images you generate here are not recorded unless you choose to share them. Please share any cool images / prompts on the community tab here or our discord server!
<br>
<br>
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
''')
with gr.Row():
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
with gr.Row():
seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
with gr.Row():
with gr.Column():
guidance = gr.Slider(0, 10, label="guidance", dtype=float, value=default_guidance, step=0.1, interactive=True)
with gr.Column():
steps = gr.Slider(1, 100, label="inference steps", dtype=int, value=default_steps, step=1, interactive=True)
with gr.Row():
with gr.Column():
width = gr.Slider(144, 4200, label="width", dtype=int, value=default_pixel, step=8, interactive=True)
with gr.Column():
height = gr.Slider(144, 4200, label="height", dtype=int, value=default_pixel, step=8, interactive=True)
gr.Markdown("<u>heads-up</u>: Height multiplied by width should not exceed about 645,000 or an error may occur. If an error occours refresh your browser tab or errors will continue. If you exceed this range the app will attempt to avoid an error by lowering your input height. We are actively seeking out ways to handle higher resolutions!")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
# go_button.click(fn=image_prompt, inputs=[prompt, dropdown, guidance, steps, seed, height, width], outputs=[output, output_text])
go_button.click(fn=image_prompt, inputs=[prompt, guidance, steps, seed, height, width], outputs=[output, output_text])
gr.Markdown('''
## Prompt Examples Using Artist Tokens:
* "an alien in the style of \<ahx-model-12>"
* "a painting in the style of \<ahx-model-11>"
* "a landscape in the style of \<ahx-model-10> and \<ahx-model-14> "
## Valid Artist Tokens:
* \<ahx-model-3>
* \<ahx-model-4>
* \<ahx-model-6>
* \<ahx-model-7>
* \<ahx-model-9>
* \<ahx-model-10>
* \<ahx-model-11>
* \<ahx-model-12>
* \<ahx-model-13>
* \<ahx-model-14>
''')
# -----------------------------------------------------------------------------------------------
#@title Dropdown Prompt Tab
model_tags = [model.modelId.split("/")[1] for model in ahx_model_list]
model_tags.sort()
import random
#@title Gradio Concept Loader
DROPDOWNS = {}
for model in model_tags:
if model != "ahx-model-1" and model != "ahx-model-2":
DROPDOWNS[model] = f" in the style of <{model}>"
# def image_prompt(prompt, dropdown, guidance, steps, seed, height, width):
def default_guidance():
return 7.5
def default_steps():
return 30
def default_pixel():
return 768
def random_seed():
return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615
def simple_image_prompt(prompt, dropdown):
seed = random_seed()
guidance = 7.5
height = 768
width = 768
steps = 30
prompt = prompt + DROPDOWNS[dropdown]
generator = torch.Generator(device="cuda").manual_seed(int(seed))
return (
pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=int((height // 8) * 8), width=int((width // 8) * 8)).images[0],
f"prompt = '{prompt}'\nseed = {int(seed)}\nguidance_scale = {guidance}\ninference steps = {steps}\nheight = {int((height // 8) * 8)}\nwidth = {int((width // 8) * 8)}"
)
# ~~~ WELCOME TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
with gr.Blocks(css=".gradio-container {max-width: 650px}") as new_welcome:
gr.Markdown('''
# πŸ§‘β€πŸš€ Astronaut Horse Concept Loader
This tool allows you to run your own text prompts into fine-tuned artist concepts from an ongoing series of Stable Diffusion collaborations with visual artists linked below. Select an artist's fine-tuned concept / model from the dropdown and enter any desired text prompt. You can check out example output images and project details on the project's webpage. Additionally you can play around with more controls in the Advanced Prompting tab.
<br>
<br>
The images you generate here are not recorded unless you choose to share them. Please share any cool images / prompts on the community tab here or our discord server!
<br>
<br>
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
''')
dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-model' in dropdown], label="choose style...")
# with gr.Row():
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown], outputs=[output, output_text])
# -----------------------------------------------------------------------------------------------
def infer(text, dropdown):
images_list = pipe(
[f"{text} in the style of <{dropdown}>"],
num_inference_steps=30,
guidance_scale=7.5
)
return images_list.images, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
css = ""
examples = []
# ~~~ DEMO TAB? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
with gr.Blocks(css=css) as demo:
state = gr.Variable({
'selected': -1
})
state = {}
def update_state(i):
global checkbox_states
if(checkbox_states[i]):
checkbox_states[i] = False
state[i] = False
else:
state[i] = True
checkbox_states[i] = True
gr.Markdown('''
# πŸ§‘β€πŸš€ Astronaut Horse Concept Loader
This tool allows you to run your own text prompts into fine-tuned artist concepts from an ongoing series of Stable Diffusion collaborations with visual artists linked below. Select an artist's fine-tuned concept / model from the dropdown and enter any desired text prompt. You can check out example output images and project details on the project's webpage. Additionally if you can play around with more controls in the Advanced Prompting tab. Enjoy!
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
''')
with gr.Row():
with gr.Column():
dropdown = gr.Dropdown(list(DROPDOWNS), label="choose style...")
text = gr.Textbox(
label="Enter your prompt", placeholder="Enter your prompt", show_label=False, max_lines=1, elem_id="prompt_input"
)
btn = gr.Button("generate image",elem_id="run_btn")
infer_outputs = gr.Gallery(show_label=False, elem_id="generated-gallery").style(grid=[1])
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
checkbox_states = {}
inputs = [text, dropdown]
btn.click(
infer,
inputs=inputs,
outputs=[infer_outputs, community_icon, loading_icon]
)
# -----------------------------------------------------------------------------------------------
# ~~~ BETA TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# def infer(text, dropdown):
# images_list = pipe(
# [f"{text} in the style of <{dropdown}>"],
# num_inference_steps=30,
# guidance_scale=7.5
# )
# return images_list.images, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
# css = ""
# examples = []
with gr.Blocks() as new_welcome:
gr.Markdown('''
# πŸ§‘β€πŸš€ Beta Concept Loader
This tool allows you to test out newly trained beta concepts trained by artists. These are experimental and may be removed if they are problematic or uninteresting. If they end up being interesting or successful though they'll be renamed and moved into the primary prompting drop-down.
Artists can now freely train new models / concepts using the link below. This uses free access to Google's GPUs but will require a password / key that you can ask for on our discord. After a new concept / model is trained it will be automatically added to this tab after ~24 hours. Check it out!
<a href="https://colab.research.google.com/drive/1FhOpcEjHT7EN53Zv9MFLQTytZp11wjqg#scrollTo=hzUluHT-I42O">https://colab.research.google.com/astronaut-horse-training-tool</a>
''')
dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-beta' in dropdown], label="choose style...")
# with gr.Row():
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown], outputs=[output, output_text])
# -----------------------------------------------------------------------------------------------
tabbed_interface = gr.TabbedInterface([new_welcome, dropdown_tab], ["Welcome!", "Advanced Prompting"])
tabbed_interface.launch()