tomaseo2022 commited on
Commit
9a09e07
1 Parent(s): b4f8683

Upload network_swinir.py

Browse files
Files changed (1) hide show
  1. models/network_swinir.py +854 -0
models/network_swinir.py ADDED
@@ -0,0 +1,854 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -----------------------------------------------------------------------------------
2
+ # SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257
3
+ # Originally Written by Ze Liu, Modified by Jingyun Liang.
4
+ # -----------------------------------------------------------------------------------
5
+
6
+ import math
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.utils.checkpoint as checkpoint
10
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
11
+
12
+
13
+ class Mlp(nn.Module):
14
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
15
+ super().__init__()
16
+ out_features = out_features or in_features
17
+ hidden_features = hidden_features or in_features
18
+ self.fc1 = nn.Linear(in_features, hidden_features)
19
+ self.act = act_layer()
20
+ self.fc2 = nn.Linear(hidden_features, out_features)
21
+ self.drop = nn.Dropout(drop)
22
+
23
+ def forward(self, x):
24
+ x = self.fc1(x)
25
+ x = self.act(x)
26
+ x = self.drop(x)
27
+ x = self.fc2(x)
28
+ x = self.drop(x)
29
+ return x
30
+
31
+
32
+ def window_partition(x, window_size):
33
+ """
34
+ Args:
35
+ x: (B, H, W, C)
36
+ window_size (int): window size
37
+
38
+ Returns:
39
+ windows: (num_windows*B, window_size, window_size, C)
40
+ """
41
+ B, H, W, C = x.shape
42
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
43
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
44
+ return windows
45
+
46
+
47
+ def window_reverse(windows, window_size, H, W):
48
+ """
49
+ Args:
50
+ windows: (num_windows*B, window_size, window_size, C)
51
+ window_size (int): Window size
52
+ H (int): Height of image
53
+ W (int): Width of image
54
+
55
+ Returns:
56
+ x: (B, H, W, C)
57
+ """
58
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
59
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
60
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
61
+ return x
62
+
63
+
64
+ class WindowAttention(nn.Module):
65
+ r""" Window based multi-head self attention (W-MSA) module with relative position bias.
66
+ It supports both of shifted and non-shifted window.
67
+
68
+ Args:
69
+ dim (int): Number of input channels.
70
+ window_size (tuple[int]): The height and width of the window.
71
+ num_heads (int): Number of attention heads.
72
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
73
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
74
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
75
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
76
+ """
77
+
78
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
79
+
80
+ super().__init__()
81
+ self.dim = dim
82
+ self.window_size = window_size # Wh, Ww
83
+ self.num_heads = num_heads
84
+ head_dim = dim // num_heads
85
+ self.scale = qk_scale or head_dim ** -0.5
86
+
87
+ # define a parameter table of relative position bias
88
+ self.relative_position_bias_table = nn.Parameter(
89
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
90
+
91
+ # get pair-wise relative position index for each token inside the window
92
+ coords_h = torch.arange(self.window_size[0])
93
+ coords_w = torch.arange(self.window_size[1])
94
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
95
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
96
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
97
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
98
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
99
+ relative_coords[:, :, 1] += self.window_size[1] - 1
100
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
101
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
102
+ self.register_buffer("relative_position_index", relative_position_index)
103
+
104
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
105
+ self.attn_drop = nn.Dropout(attn_drop)
106
+ self.proj = nn.Linear(dim, dim)
107
+
108
+ self.proj_drop = nn.Dropout(proj_drop)
109
+
110
+ trunc_normal_(self.relative_position_bias_table, std=.02)
111
+ self.softmax = nn.Softmax(dim=-1)
112
+
113
+ def forward(self, x, mask=None):
114
+ """
115
+ Args:
116
+ x: input features with shape of (num_windows*B, N, C)
117
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
118
+ """
119
+ B_, N, C = x.shape
120
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
121
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
122
+
123
+ q = q * self.scale
124
+ attn = (q @ k.transpose(-2, -1))
125
+
126
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
127
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
128
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
129
+ attn = attn + relative_position_bias.unsqueeze(0)
130
+
131
+ if mask is not None:
132
+ nW = mask.shape[0]
133
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
134
+ attn = attn.view(-1, self.num_heads, N, N)
135
+ attn = self.softmax(attn)
136
+ else:
137
+ attn = self.softmax(attn)
138
+
139
+ attn = self.attn_drop(attn)
140
+
141
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
142
+ x = self.proj(x)
143
+ x = self.proj_drop(x)
144
+ return x
145
+
146
+ def extra_repr(self) -> str:
147
+ return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
148
+
149
+ def flops(self, N):
150
+ # calculate flops for 1 window with token length of N
151
+ flops = 0
152
+ # qkv = self.qkv(x)
153
+ flops += N * self.dim * 3 * self.dim
154
+ # attn = (q @ k.transpose(-2, -1))
155
+ flops += self.num_heads * N * (self.dim // self.num_heads) * N
156
+ # x = (attn @ v)
157
+ flops += self.num_heads * N * N * (self.dim // self.num_heads)
158
+ # x = self.proj(x)
159
+ flops += N * self.dim * self.dim
160
+ return flops
161
+
162
+
163
+ class SwinTransformerBlock(nn.Module):
164
+ r""" Swin Transformer Block.
165
+
166
+ Args:
167
+ dim (int): Number of input channels.
168
+ input_resolution (tuple[int]): Input resulotion.
169
+ num_heads (int): Number of attention heads.
170
+ window_size (int): Window size.
171
+ shift_size (int): Shift size for SW-MSA.
172
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
173
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
174
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
175
+ drop (float, optional): Dropout rate. Default: 0.0
176
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
177
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
178
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
179
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
180
+ """
181
+
182
+ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
183
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
184
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm):
185
+ super().__init__()
186
+ self.dim = dim
187
+ self.input_resolution = input_resolution
188
+ self.num_heads = num_heads
189
+ self.window_size = window_size
190
+ self.shift_size = shift_size
191
+ self.mlp_ratio = mlp_ratio
192
+ if min(self.input_resolution) <= self.window_size:
193
+ # if window size is larger than input resolution, we don't partition windows
194
+ self.shift_size = 0
195
+ self.window_size = min(self.input_resolution)
196
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
197
+
198
+ self.norm1 = norm_layer(dim)
199
+ self.attn = WindowAttention(
200
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
201
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
202
+
203
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
204
+ self.norm2 = norm_layer(dim)
205
+ mlp_hidden_dim = int(dim * mlp_ratio)
206
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
207
+
208
+ if self.shift_size > 0:
209
+ attn_mask = self.calculate_mask(self.input_resolution)
210
+ else:
211
+ attn_mask = None
212
+
213
+ self.register_buffer("attn_mask", attn_mask)
214
+
215
+ def calculate_mask(self, x_size):
216
+ # calculate attention mask for SW-MSA
217
+ H, W = x_size
218
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
219
+ h_slices = (slice(0, -self.window_size),
220
+ slice(-self.window_size, -self.shift_size),
221
+ slice(-self.shift_size, None))
222
+ w_slices = (slice(0, -self.window_size),
223
+ slice(-self.window_size, -self.shift_size),
224
+ slice(-self.shift_size, None))
225
+ cnt = 0
226
+ for h in h_slices:
227
+ for w in w_slices:
228
+ img_mask[:, h, w, :] = cnt
229
+ cnt += 1
230
+
231
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
232
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
233
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
234
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
235
+
236
+ return attn_mask
237
+
238
+ def forward(self, x, x_size):
239
+ H, W = x_size
240
+ B, L, C = x.shape
241
+ # assert L == H * W, "input feature has wrong size"
242
+
243
+ shortcut = x
244
+ x = self.norm1(x)
245
+ x = x.view(B, H, W, C)
246
+
247
+ # cyclic shift
248
+ if self.shift_size > 0:
249
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
250
+ else:
251
+ shifted_x = x
252
+
253
+ # partition windows
254
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
255
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
256
+
257
+ # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
258
+ if self.input_resolution == x_size:
259
+ attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
260
+ else:
261
+ attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
262
+
263
+ # merge windows
264
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
265
+ shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
266
+
267
+ # reverse cyclic shift
268
+ if self.shift_size > 0:
269
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
270
+ else:
271
+ x = shifted_x
272
+ x = x.view(B, H * W, C)
273
+
274
+ # FFN
275
+ x = shortcut + self.drop_path(x)
276
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
277
+
278
+ return x
279
+
280
+ def extra_repr(self) -> str:
281
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
282
+ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
283
+
284
+ def flops(self):
285
+ flops = 0
286
+ H, W = self.input_resolution
287
+ # norm1
288
+ flops += self.dim * H * W
289
+ # W-MSA/SW-MSA
290
+ nW = H * W / self.window_size / self.window_size
291
+ flops += nW * self.attn.flops(self.window_size * self.window_size)
292
+ # mlp
293
+ flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
294
+ # norm2
295
+ flops += self.dim * H * W
296
+ return flops
297
+
298
+
299
+ class PatchMerging(nn.Module):
300
+ r""" Patch Merging Layer.
301
+
302
+ Args:
303
+ input_resolution (tuple[int]): Resolution of input feature.
304
+ dim (int): Number of input channels.
305
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
306
+ """
307
+
308
+ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
309
+ super().__init__()
310
+ self.input_resolution = input_resolution
311
+ self.dim = dim
312
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
313
+ self.norm = norm_layer(4 * dim)
314
+
315
+ def forward(self, x):
316
+ """
317
+ x: B, H*W, C
318
+ """
319
+ H, W = self.input_resolution
320
+ B, L, C = x.shape
321
+ assert L == H * W, "input feature has wrong size"
322
+ assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
323
+
324
+ x = x.view(B, H, W, C)
325
+
326
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
327
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
328
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
329
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
330
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
331
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
332
+
333
+ x = self.norm(x)
334
+ x = self.reduction(x)
335
+
336
+ return x
337
+
338
+ def extra_repr(self) -> str:
339
+ return f"input_resolution={self.input_resolution}, dim={self.dim}"
340
+
341
+ def flops(self):
342
+ H, W = self.input_resolution
343
+ flops = H * W * self.dim
344
+ flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
345
+ return flops
346
+
347
+
348
+ class BasicLayer(nn.Module):
349
+ """ A basic Swin Transformer layer for one stage.
350
+
351
+ Args:
352
+ dim (int): Number of input channels.
353
+ input_resolution (tuple[int]): Input resolution.
354
+ depth (int): Number of blocks.
355
+ num_heads (int): Number of attention heads.
356
+ window_size (int): Local window size.
357
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
358
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
359
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
360
+ drop (float, optional): Dropout rate. Default: 0.0
361
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
362
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
363
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
364
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
365
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
366
+ """
367
+
368
+ def __init__(self, dim, input_resolution, depth, num_heads, window_size,
369
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
370
+ drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
371
+
372
+ super().__init__()
373
+ self.dim = dim
374
+ self.input_resolution = input_resolution
375
+ self.depth = depth
376
+ self.use_checkpoint = use_checkpoint
377
+
378
+ # build blocks
379
+ self.blocks = nn.ModuleList([
380
+ SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
381
+ num_heads=num_heads, window_size=window_size,
382
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
383
+ mlp_ratio=mlp_ratio,
384
+ qkv_bias=qkv_bias, qk_scale=qk_scale,
385
+ drop=drop, attn_drop=attn_drop,
386
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
387
+ norm_layer=norm_layer)
388
+ for i in range(depth)])
389
+
390
+ # patch merging layer
391
+ if downsample is not None:
392
+ self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
393
+ else:
394
+ self.downsample = None
395
+
396
+ def forward(self, x, x_size):
397
+ for blk in self.blocks:
398
+ if self.use_checkpoint:
399
+ x = checkpoint.checkpoint(blk, x, x_size)
400
+ else:
401
+ x = blk(x, x_size)
402
+ if self.downsample is not None:
403
+ x = self.downsample(x)
404
+ return x
405
+
406
+ def extra_repr(self) -> str:
407
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
408
+
409
+ def flops(self):
410
+ flops = 0
411
+ for blk in self.blocks:
412
+ flops += blk.flops()
413
+ if self.downsample is not None:
414
+ flops += self.downsample.flops()
415
+ return flops
416
+
417
+
418
+ class RSTB(nn.Module):
419
+ """Residual Swin Transformer Block (RSTB).
420
+
421
+ Args:
422
+ dim (int): Number of input channels.
423
+ input_resolution (tuple[int]): Input resolution.
424
+ depth (int): Number of blocks.
425
+ num_heads (int): Number of attention heads.
426
+ window_size (int): Local window size.
427
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
428
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
429
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
430
+ drop (float, optional): Dropout rate. Default: 0.0
431
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
432
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
433
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
434
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
435
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
436
+ img_size: Input image size.
437
+ patch_size: Patch size.
438
+ resi_connection: The convolutional block before residual connection.
439
+ """
440
+
441
+ def __init__(self, dim, input_resolution, depth, num_heads, window_size,
442
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
443
+ drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
444
+ img_size=224, patch_size=4, resi_connection='1conv'):
445
+ super(RSTB, self).__init__()
446
+
447
+ self.dim = dim
448
+ self.input_resolution = input_resolution
449
+
450
+ self.residual_group = BasicLayer(dim=dim,
451
+ input_resolution=input_resolution,
452
+ depth=depth,
453
+ num_heads=num_heads,
454
+ window_size=window_size,
455
+ mlp_ratio=mlp_ratio,
456
+ qkv_bias=qkv_bias, qk_scale=qk_scale,
457
+ drop=drop, attn_drop=attn_drop,
458
+ drop_path=drop_path,
459
+ norm_layer=norm_layer,
460
+ downsample=downsample,
461
+ use_checkpoint=use_checkpoint)
462
+
463
+ if resi_connection == '1conv':
464
+ self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
465
+ elif resi_connection == '3conv':
466
+ # to save parameters and memory
467
+ self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
468
+ nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
469
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
470
+ nn.Conv2d(dim // 4, dim, 3, 1, 1))
471
+
472
+ self.patch_embed = PatchEmbed(
473
+ img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
474
+ norm_layer=None)
475
+
476
+ self.patch_unembed = PatchUnEmbed(
477
+ img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
478
+ norm_layer=None)
479
+
480
+ def forward(self, x, x_size):
481
+ return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
482
+
483
+ def flops(self):
484
+ flops = 0
485
+ flops += self.residual_group.flops()
486
+ H, W = self.input_resolution
487
+ flops += H * W * self.dim * self.dim * 9
488
+ flops += self.patch_embed.flops()
489
+ flops += self.patch_unembed.flops()
490
+
491
+ return flops
492
+
493
+
494
+ class PatchEmbed(nn.Module):
495
+ r""" Image to Patch Embedding
496
+
497
+ Args:
498
+ img_size (int): Image size. Default: 224.
499
+ patch_size (int): Patch token size. Default: 4.
500
+ in_chans (int): Number of input image channels. Default: 3.
501
+ embed_dim (int): Number of linear projection output channels. Default: 96.
502
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
503
+ """
504
+
505
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
506
+ super().__init__()
507
+ img_size = to_2tuple(img_size)
508
+ patch_size = to_2tuple(patch_size)
509
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
510
+ self.img_size = img_size
511
+ self.patch_size = patch_size
512
+ self.patches_resolution = patches_resolution
513
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
514
+
515
+ self.in_chans = in_chans
516
+ self.embed_dim = embed_dim
517
+
518
+ if norm_layer is not None:
519
+ self.norm = norm_layer(embed_dim)
520
+ else:
521
+ self.norm = None
522
+
523
+ def forward(self, x):
524
+ x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
525
+ if self.norm is not None:
526
+ x = self.norm(x)
527
+ return x
528
+
529
+ def flops(self):
530
+ flops = 0
531
+ H, W = self.img_size
532
+ if self.norm is not None:
533
+ flops += H * W * self.embed_dim
534
+ return flops
535
+
536
+
537
+ class PatchUnEmbed(nn.Module):
538
+ r""" Image to Patch Unembedding
539
+
540
+ Args:
541
+ img_size (int): Image size. Default: 224.
542
+ patch_size (int): Patch token size. Default: 4.
543
+ in_chans (int): Number of input image channels. Default: 3.
544
+ embed_dim (int): Number of linear projection output channels. Default: 96.
545
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
546
+ """
547
+
548
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
549
+ super().__init__()
550
+ img_size = to_2tuple(img_size)
551
+ patch_size = to_2tuple(patch_size)
552
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
553
+ self.img_size = img_size
554
+ self.patch_size = patch_size
555
+ self.patches_resolution = patches_resolution
556
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
557
+
558
+ self.in_chans = in_chans
559
+ self.embed_dim = embed_dim
560
+
561
+ def forward(self, x, x_size):
562
+ B, HW, C = x.shape
563
+ x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
564
+ return x
565
+
566
+ def flops(self):
567
+ flops = 0
568
+ return flops
569
+
570
+
571
+ class Upsample(nn.Sequential):
572
+ """Upsample module.
573
+
574
+ Args:
575
+ scale (int): Scale factor. Supported scales: 2^n and 3.
576
+ num_feat (int): Channel number of intermediate features.
577
+ """
578
+
579
+ def __init__(self, scale, num_feat):
580
+ m = []
581
+ if (scale & (scale - 1)) == 0: # scale = 2^n
582
+ for _ in range(int(math.log(scale, 2))):
583
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
584
+ m.append(nn.PixelShuffle(2))
585
+ elif scale == 3:
586
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
587
+ m.append(nn.PixelShuffle(3))
588
+ else:
589
+ raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
590
+ super(Upsample, self).__init__(*m)
591
+
592
+
593
+ class UpsampleOneStep(nn.Sequential):
594
+ """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
595
+ Used in lightweight SR to save parameters.
596
+
597
+ Args:
598
+ scale (int): Scale factor. Supported scales: 2^n and 3.
599
+ num_feat (int): Channel number of intermediate features.
600
+
601
+ """
602
+
603
+ def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
604
+ self.num_feat = num_feat
605
+ self.input_resolution = input_resolution
606
+ m = []
607
+ m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
608
+ m.append(nn.PixelShuffle(scale))
609
+ super(UpsampleOneStep, self).__init__(*m)
610
+
611
+ def flops(self):
612
+ H, W = self.input_resolution
613
+ flops = H * W * self.num_feat * 3 * 9
614
+ return flops
615
+
616
+
617
+ class SwinIR(nn.Module):
618
+ r""" SwinIR
619
+ A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer.
620
+
621
+ Args:
622
+ img_size (int | tuple(int)): Input image size. Default 64
623
+ patch_size (int | tuple(int)): Patch size. Default: 1
624
+ in_chans (int): Number of input image channels. Default: 3
625
+ embed_dim (int): Patch embedding dimension. Default: 96
626
+ depths (tuple(int)): Depth of each Swin Transformer layer.
627
+ num_heads (tuple(int)): Number of attention heads in different layers.
628
+ window_size (int): Window size. Default: 7
629
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
630
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
631
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
632
+ drop_rate (float): Dropout rate. Default: 0
633
+ attn_drop_rate (float): Attention dropout rate. Default: 0
634
+ drop_path_rate (float): Stochastic depth rate. Default: 0.1
635
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
636
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
637
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True
638
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
639
+ upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
640
+ img_range: Image range. 1. or 255.
641
+ upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
642
+ resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
643
+ """
644
+
645
+ def __init__(self, img_size=64, patch_size=1, in_chans=3,
646
+ embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
647
+ window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
648
+ drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
649
+ norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
650
+ use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
651
+ **kwargs):
652
+ super(SwinIR, self).__init__()
653
+ num_in_ch = in_chans
654
+ num_out_ch = in_chans
655
+ num_feat = 64
656
+ self.img_range = img_range
657
+ if in_chans == 3:
658
+ rgb_mean = (0.4488, 0.4371, 0.4040)
659
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
660
+ else:
661
+ self.mean = torch.zeros(1, 1, 1, 1)
662
+ self.upscale = upscale
663
+ self.upsampler = upsampler
664
+
665
+ #####################################################################################################
666
+ ################################### 1, shallow feature extraction ###################################
667
+ self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
668
+
669
+ #####################################################################################################
670
+ ################################### 2, deep feature extraction ######################################
671
+ self.num_layers = len(depths)
672
+ self.embed_dim = embed_dim
673
+ self.ape = ape
674
+ self.patch_norm = patch_norm
675
+ self.num_features = embed_dim
676
+ self.mlp_ratio = mlp_ratio
677
+
678
+ # split image into non-overlapping patches
679
+ self.patch_embed = PatchEmbed(
680
+ img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
681
+ norm_layer=norm_layer if self.patch_norm else None)
682
+ num_patches = self.patch_embed.num_patches
683
+ patches_resolution = self.patch_embed.patches_resolution
684
+ self.patches_resolution = patches_resolution
685
+
686
+ # merge non-overlapping patches into image
687
+ self.patch_unembed = PatchUnEmbed(
688
+ img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
689
+ norm_layer=norm_layer if self.patch_norm else None)
690
+
691
+ # absolute position embedding
692
+ if self.ape:
693
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
694
+ trunc_normal_(self.absolute_pos_embed, std=.02)
695
+
696
+ self.pos_drop = nn.Dropout(p=drop_rate)
697
+
698
+ # stochastic depth
699
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
700
+
701
+ # build Residual Swin Transformer blocks (RSTB)
702
+ self.layers = nn.ModuleList()
703
+ for i_layer in range(self.num_layers):
704
+ layer = RSTB(dim=embed_dim,
705
+ input_resolution=(patches_resolution[0],
706
+ patches_resolution[1]),
707
+ depth=depths[i_layer],
708
+ num_heads=num_heads[i_layer],
709
+ window_size=window_size,
710
+ mlp_ratio=self.mlp_ratio,
711
+ qkv_bias=qkv_bias, qk_scale=qk_scale,
712
+ drop=drop_rate, attn_drop=attn_drop_rate,
713
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
714
+ norm_layer=norm_layer,
715
+ downsample=None,
716
+ use_checkpoint=use_checkpoint,
717
+ img_size=img_size,
718
+ patch_size=patch_size,
719
+ resi_connection=resi_connection
720
+
721
+ )
722
+ self.layers.append(layer)
723
+ self.norm = norm_layer(self.num_features)
724
+
725
+ # build the last conv layer in deep feature extraction
726
+ if resi_connection == '1conv':
727
+ self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
728
+ elif resi_connection == '3conv':
729
+ # to save parameters and memory
730
+ self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
731
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
732
+ nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
733
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
734
+ nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
735
+
736
+ #####################################################################################################
737
+ ################################ 3, high quality image reconstruction ################################
738
+ if self.upsampler == 'pixelshuffle':
739
+ # for classical SR
740
+ self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
741
+ nn.LeakyReLU(inplace=True))
742
+ self.upsample = Upsample(upscale, num_feat)
743
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
744
+ elif self.upsampler == 'pixelshuffledirect':
745
+ # for lightweight SR (to save parameters)
746
+ self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
747
+ (patches_resolution[0], patches_resolution[1]))
748
+ elif self.upsampler == 'nearest+conv':
749
+ # for real-world SR (less artifacts)
750
+ assert self.upscale == 4, 'only support x4 now.'
751
+ self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
752
+ nn.LeakyReLU(inplace=True))
753
+ self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
754
+ self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
755
+ self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
756
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
757
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
758
+ else:
759
+ # for image denoising and JPEG compression artifact reduction
760
+ self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
761
+
762
+ self.apply(self._init_weights)
763
+
764
+ def _init_weights(self, m):
765
+ if isinstance(m, nn.Linear):
766
+ trunc_normal_(m.weight, std=.02)
767
+ if isinstance(m, nn.Linear) and m.bias is not None:
768
+ nn.init.constant_(m.bias, 0)
769
+ elif isinstance(m, nn.LayerNorm):
770
+ nn.init.constant_(m.bias, 0)
771
+ nn.init.constant_(m.weight, 1.0)
772
+
773
+ @torch.jit.ignore
774
+ def no_weight_decay(self):
775
+ return {'absolute_pos_embed'}
776
+
777
+ @torch.jit.ignore
778
+ def no_weight_decay_keywords(self):
779
+ return {'relative_position_bias_table'}
780
+
781
+ def forward_features(self, x):
782
+ x_size = (x.shape[2], x.shape[3])
783
+ x = self.patch_embed(x)
784
+ if self.ape:
785
+ x = x + self.absolute_pos_embed
786
+ x = self.pos_drop(x)
787
+
788
+ for layer in self.layers:
789
+ x = layer(x, x_size)
790
+
791
+ x = self.norm(x) # B L C
792
+ x = self.patch_unembed(x, x_size)
793
+
794
+ return x
795
+
796
+ def forward(self, x):
797
+ self.mean = self.mean.type_as(x)
798
+ x = (x - self.mean) * self.img_range
799
+
800
+ if self.upsampler == 'pixelshuffle':
801
+ # for classical SR
802
+ x = self.conv_first(x)
803
+ x = self.conv_after_body(self.forward_features(x)) + x
804
+ x = self.conv_before_upsample(x)
805
+ x = self.conv_last(self.upsample(x))
806
+ elif self.upsampler == 'pixelshuffledirect':
807
+ # for lightweight SR
808
+ x = self.conv_first(x)
809
+ x = self.conv_after_body(self.forward_features(x)) + x
810
+ x = self.upsample(x)
811
+ elif self.upsampler == 'nearest+conv':
812
+ # for real-world SR
813
+ x = self.conv_first(x)
814
+ x = self.conv_after_body(self.forward_features(x)) + x
815
+ x = self.conv_before_upsample(x)
816
+ x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
817
+ x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
818
+ x = self.conv_last(self.lrelu(self.conv_hr(x)))
819
+ else:
820
+ # for image denoising and JPEG compression artifact reduction
821
+ x_first = self.conv_first(x)
822
+ res = self.conv_after_body(self.forward_features(x_first)) + x_first
823
+ x = x + self.conv_last(res)
824
+
825
+ x = x / self.img_range + self.mean
826
+
827
+ return x
828
+
829
+ def flops(self):
830
+ flops = 0
831
+ H, W = self.patches_resolution
832
+ flops += H * W * 3 * self.embed_dim * 9
833
+ flops += self.patch_embed.flops()
834
+ for i, layer in enumerate(self.layers):
835
+ flops += layer.flops()
836
+ flops += H * W * 3 * self.embed_dim * self.embed_dim
837
+ flops += self.upsample.flops()
838
+ return flops
839
+
840
+
841
+ if __name__ == '__main__':
842
+ upscale = 4
843
+ window_size = 8
844
+ height = (1024 // upscale // window_size + 1) * window_size
845
+ width = (720 // upscale // window_size + 1) * window_size
846
+ model = SwinIR(upscale=2, img_size=(height, width),
847
+ window_size=window_size, img_range=1., depths=[6, 6, 6, 6],
848
+ embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
849
+ print(model)
850
+ print(height, width, model.flops() / 1e9)
851
+
852
+ x = torch.randn((1, 3, height, width))
853
+ x = model(x)
854
+ print(x.shape)