Spaces:
Sleeping
Sleeping
Update diffusion_lens.py
Browse files- diffusion_lens.py +27 -7
diffusion_lens.py
CHANGED
@@ -1,19 +1,39 @@
|
|
1 |
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
|
2 |
import torch
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
9 |
|
10 |
-
# Move the pipeline to the device
|
11 |
-
pipeline.to(device)
|
12 |
|
13 |
-
def get_images(prompt, skip_layers):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
print('inside get images')
|
|
|
|
|
15 |
print(f'skipping {skip_layers}')
|
16 |
-
pipeline_output = pipeline(prompt, clip_skip=skip_layers, num_images_per_prompt=1, return_tensors=False)
|
17 |
print('after pipeline')
|
18 |
images = pipeline_output.images
|
19 |
print('got images')
|
|
|
1 |
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
|
2 |
import torch
|
3 |
|
4 |
+
model_dict = {
|
5 |
+
'sd1': "CompVis/stable-diffusion-v1-4",
|
6 |
+
'sd2': "stabilityai/stable-diffusion-2-1",
|
7 |
+
}
|
8 |
|
9 |
+
model_num_of_layers = {
|
10 |
+
'sd1': 12,
|
11 |
+
'sd2': 22,
|
12 |
+
}
|
13 |
+
|
14 |
+
|
15 |
+
# global variable
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
18 |
+
|
19 |
|
|
|
|
|
20 |
|
21 |
+
def get_images(prompt, skip_layers, model, seed):
|
22 |
+
model_name = model_dict[model]
|
23 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
24 |
+
model_name,
|
25 |
+
torch_dtype=dtype,
|
26 |
+
variant="fp16",
|
27 |
+
add_watermarker=False,
|
28 |
+
)
|
29 |
+
# Move the pipeline to the device
|
30 |
+
pipeline.to(device)
|
31 |
+
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
|
32 |
print('inside get images')
|
33 |
+
layer = model_num_of_layers[model] - skip_layers
|
34 |
+
gr.Info(f:"Generating image from {layer}'th layer")
|
35 |
print(f'skipping {skip_layers}')
|
36 |
+
pipeline_output = pipeline(prompt, clip_skip=skip_layers, num_images_per_prompt=1, return_tensors=False, seed=seed)
|
37 |
print('after pipeline')
|
38 |
images = pipeline_output.images
|
39 |
print('got images')
|