BiRefNet_demo / app.py
tohid4n's picture
Update app.py
4224f5f verified
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces
from glob import glob
from typing import Tuple
from PIL import Image
import torch
from torchvision import transforms
import requests
from io import BytesIO
import zipfile
# Fix the HF space permission error when using from_pretrained(..., trust_remote_code=True)
os.environ["HF_MODULES_CACHE"] = os.path.join("/tmp/hf_cache", "modules")
import transformers
transformers.utils.move_cache()
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
## CPU version refinement
def FB_blur_fusion_foreground_estimator_cpu(image, FG, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FGA = cv2.blur(FG * alpha, (r, r))
blurred_FG = blurred_FGA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
FG = blurred_FG + alpha * (image - alpha * blurred_FG - (1 - alpha) * blurred_B)
FG = np.clip(FG, 0, 1)
return FG, blurred_B
def FB_blur_fusion_foreground_estimator_cpu_2(image, alpha, r=90):
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
alpha = alpha[:, :, None]
FG, blur_B = FB_blur_fusion_foreground_estimator_cpu(image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator_cpu(image, FG, blur_B, alpha, r=6)[0]
## GPU version refinement
def mean_blur(x, kernel_size):
"""
equivalent to cv.blur
x: [B, C, H, W]
"""
if kernel_size % 2 == 0:
pad_l = kernel_size // 2 - 1
pad_r = kernel_size // 2
pad_t = kernel_size // 2 - 1
pad_b = kernel_size // 2
else:
pad_l = pad_r = pad_t = pad_b = kernel_size // 2
x_padded = torch.nn.functional.pad(x, (pad_l, pad_r, pad_t, pad_b), mode='replicate')
return torch.nn.functional.avg_pool2d(x_padded, kernel_size=(kernel_size, kernel_size), stride=1, count_include_pad=False)
def FB_blur_fusion_foreground_estimator_gpu(image, FG, B, alpha, r=90):
as_dtype = lambda x, dtype: x.to(dtype) if x.dtype != dtype else x
input_dtype = image.dtype
# convert image to float to avoid overflow
image = as_dtype(image, torch.float32)
FG = as_dtype(FG, torch.float32)
B = as_dtype(B, torch.float32)
alpha = as_dtype(alpha, torch.float32)
blurred_alpha = mean_blur(alpha, kernel_size=r)
blurred_FGA = mean_blur(FG * alpha, kernel_size=r)
blurred_FG = blurred_FGA / (blurred_alpha + 1e-5)
blurred_B1A = mean_blur(B * (1 - alpha), kernel_size=r)
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
FG_output = blurred_FG + alpha * (image - alpha * blurred_FG - (1 - alpha) * blurred_B)
FG_output = torch.clamp(FG_output, 0, 1)
return as_dtype(FG_output, input_dtype), as_dtype(blurred_B, input_dtype)
def FB_blur_fusion_foreground_estimator_gpu_2(image, alpha, r=90):
# Thanks to the source: https://github.com/ZhengPeng7/BiRefNet/issues/226#issuecomment-3016433728
FG, blur_B = FB_blur_fusion_foreground_estimator_gpu(image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator_gpu(image, FG, blur_B, alpha, r=6)[0]
def refine_foreground(image, mask, r=90, device='cuda'):
"""both image and mask are in range of [0, 1]"""
if mask.size != image.size:
mask = mask.resize(image.size)
if device == 'cuda':
image = transforms.functional.to_tensor(image).float().cuda()
mask = transforms.functional.to_tensor(mask).float().cuda()
image = image.unsqueeze(0)
mask = mask.unsqueeze(0)
estimated_foreground = FB_blur_fusion_foreground_estimator_gpu_2(image, mask, r=r)
estimated_foreground = estimated_foreground.squeeze()
estimated_foreground = (estimated_foreground.mul(255.0)).to(torch.uint8)
estimated_foreground = estimated_foreground.permute(1, 2, 0).contiguous().cpu().numpy().astype(np.uint8)
else:
image = np.array(image, dtype=np.float32) / 255.0
mask = np.array(mask, dtype=np.float32) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_cpu_2(image, mask, r=r)
estimated_foreground = (estimated_foreground * 255.0).astype(np.uint8)
estimated_foreground = Image.fromarray(np.ascontiguousarray(estimated_foreground))
return estimated_foreground
class ImagePreprocessor():
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
# Input resolution is on WxH.
self.transform_image = transforms.Compose([
transforms.Resize(resolution[::-1]),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
usage_to_weights_file = {
'General': 'BiRefNet',
'General-HR': 'BiRefNet_HR',
'Matting-HR': 'BiRefNet_HR-matting',
'Matting': 'BiRefNet-matting',
'Portrait': 'BiRefNet-portrait',
'General-reso_512': 'BiRefNet_512x512',
'General-Lite': 'BiRefNet_lite',
'General-Lite-2K': 'BiRefNet_lite-2K',
# 'Anime-Lite': 'BiRefNet_lite-Anime',
'DIS': 'BiRefNet-DIS5K',
'HRSOD': 'BiRefNet-HRSOD',
'COD': 'BiRefNet-COD',
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
'General-legacy': 'BiRefNet-legacy',
'General-dynamic': 'BiRefNet_dynamic',
'Matting-dynamic': 'BiRefNet_dynamic-matting',
}
birefnet = transformers.AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True)
birefnet.to(device)
birefnet.eval(); birefnet.half()
@spaces.GPU
def predict_simple(image):
assert (image is not None), 'AssertionError: images cannot be None.'
global birefnet
# Use best default settings
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file['General']))
birefnet = transformers.AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
birefnet.to(device)
birefnet.eval(); birefnet.half()
# Auto resolution - use 1024x1024 for best results
resolution = (1024, 1024)
image_ori = Image.fromarray(image)
image = image_ori.convert('RGB')
# Preprocess the image
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
image_proc = image_preprocessor.proc(image)
image_proc = image_proc.unsqueeze(0)
# Prediction
with torch.no_grad():
preds = birefnet(image_proc.to(device).half())[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Show Results
pred_pil = transforms.ToPILImage()(pred)
image_masked = refine_foreground(image, pred_pil, device=device)
image_masked.putalpha(pred_pil.resize(image.size))
torch.cuda.empty_cache()
return (image_masked, image_ori)
examples = [[_] for _ in glob('examples/*')][:]
# Custom CSS for styled buttons
custom_css = """
.submit-btn {
background: linear-gradient(45deg, #ff6b6b, #ee5a5a) !important;
color: white !important;
border: none !important;
border-radius: 12px !important;
padding: 12px 24px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 15px rgba(255, 107, 107, 0.3) !important;
}
.submit-btn:hover {
background: linear-gradient(45deg, #ff5252, #d32f2f) !important;
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(255, 107, 107, 0.4) !important;
}
.clear-btn {
background: linear-gradient(45deg, #64b5f6, #42a5f5) !important;
color: white !important;
border: none !important;
border-radius: 12px !important;
padding: 12px 24px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 15px rgba(100, 181, 246, 0.3) !important;
}
.clear-btn:hover {
background: linear-gradient(45deg, #2196f3, #1976d2) !important;
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(100, 181, 246, 0.4) !important;
}
"""
demo = gr.Interface(
fn=predict_simple,
inputs=[
gr.Image(label='Upload an image')
],
outputs=gr.ImageSlider(label="Result", type="pil", format='png'),
examples=examples,
css=custom_css,
submit_btn=gr.Button("🚀 Submit", elem_classes="submit-btn"),
clear_btn=gr.Button("🗑️ Clear", elem_classes="clear-btn"),
)
if __name__ == "__main__":
demo.launch(debug=True)