tamchuc / test.py
tobiccino's picture
update gitignore
2073e54
raw
history blame
6.47 kB
import os
import gradio as gr
import requests
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForSeq2SeqLM
from langchain.text_splitter import CharacterTextSplitter
from langchain.indexes import VectorstoreIndexCreator
from langchain.document_loaders import TextLoader
import textwrap
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub, HuggingFacePipeline, OpenAI
from sentence_transformers import SentenceTransformer
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
os.environ["OPENAI_API_KEY"] = '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'
class ChatGPT:
def __init__(self):
loaders = [TextLoader(os.path.join('./docs', fn), encoding='utf8') for fn in os.listdir('./docs')]
# loader = TextLoader('./docs/test7.txt', encoding='utf-8')
# loader = TextLoader('./state_of_the_union.txt', encoding='utf-8')
# documents = loader.load()
# print(wrap_text_preserve_newlines(str(documents[0])))
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=0,
length_function=len,
)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
index = VectorstoreIndexCreator(
embedding=embeddings,
text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)).from_loaders(loaders)
# self.docs = text_splitter.split_documents(documents)
# print(len(docs))
# embeddings = HuggingFaceEmbeddings(model_name='keepitreal/vietnamese-sbert')
# embeddings = HuggingFaceEmbeddings()
# llm = HuggingFaceHub(repo_id="vinai/phobert-base")
# model = AutoModelForCausalLM.from_pretrained("vinai/phobert-base")
# tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
# self.db = FAISS.from_documents(self.docs, embeddings)
# pipe = pipeline(
# "text-generation",
# model=model,
# tokenizer=tokenizer
# )
# local_llm = HuggingFacePipeline(pipeline=pipe)
self.chain = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0.0),
chain_type="stuff",
retriever=index.vectorstore.as_retriever(search_kwargs={"k": 3}),
input_key="question")
# self.chain = load_qa_chain(llm=OpenAI(temperature=0.0), chain_type="stuff")
# self.chain = load_qa_chain(llm=local_llm, chain_type="stuff")
def query(self,question):
# docs = self.db.similarity_search(question)
# return (self.chain.run(input_documents=docs, question=question))
return (self.chain.run(question))
def wrap_text_preserve_newlines(text, width=200):
# Split the input text into lines based on newline characters
lines = text.split('\\n')
# Wrap each line individually
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# Join the wrapped lines back together using newline characters
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
url = "https://raw.githubusercontent.com/hwchase17/langchain/master/docs/modules/state_of_the_union.txt"
# url = "https://raw.githubusercontent.com/NTT123/Vietnamese-Text-To-Speech-Dataset/master/collections.txt"
# url = "https://raw.githubusercontent.com/NTT123/Vietnamese-Text-To-Speech-Dataset/master/collections.txt"
# res = requests.get(url)
# with open("state_of_the_union.txt", "w") as f:
# f.write(res.text)
# Document Loader
# loader = TextLoader('./collections.txt', encoding='utf-8')
# # loader = TextLoader('./state_of_the_union.txt', encoding='utf-8')
# documents = loader.load()
# # print(wrap_text_preserve_newlines(str(documents[0])))
# text_splitter = CharacterTextSplitter(
# separator = "\n",
# chunk_size = 1000,
# chunk_overlap = 200,
# length_function = len,
# )
# docs = text_splitter.split_documents(documents)
# # print(len(docs))
# # embeddings = HuggingFaceEmbeddings(model_name='keepitreal/vietnamese-sbert')
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
# # embeddings = HuggingFaceEmbeddings()
#
#
# db = FAISS.from_documents(docs, embeddings)
#
# # query = "giờ làm việc của công ty"
# # docs = db.similarity_search(query)
#
#
# # print(wrap_text_preserve_newlines(str(docs[0].page_content)))
#
#
# # print(wrap_text_preserve_newlines(str(docs[1].page_content)))
# # model_id = 'google/flan-t5-base'# go for a smaller model if you dont have the VRAM
# model_id = 'VietAI/gpt-neo-1.3B-vietnamese-news'# go for a smaller model if you dont have the VRAM
# # tokenizer = AutoTokenizer.from_pretrained(model_id)
# # # model = AutoModelForSeq2SeqLM.from_pretrained(model_id,load_in_8bit=False,low_cpu_mem_usage=True)
# # model = AutoModelForCausalLM.from_pretrained(model_id,load_in_8bit=False,low_cpu_mem_usage=True)
# #
# # pipe = pipeline(
# # "text-generation",
# # model=model,
# # tokenizer=tokenizer,
# # pad_token_id=20000,
# # temperature=0.9,
# # max_length=500
# # )
# # llm=HuggingFaceHub(repo_id="VietAI/gpt-neo-1.3B-vietnamese-news", model_kwargs={"temperature":0.9,"top_k":20,"do_sample":True,"max_length":500})
# # local_llm = HuggingFacePipeline(pipeline=pipe)
# # llm=HuggingFaceHub(repo_id="google/flan-t5-base", model_kwargs={"temperature":0, "max_length":512})
# # llm=HuggingFaceHub(repo_id="VietAI/gpt-neo-1.3B-vietnamese-news", model_kwargs={"temperature":0.1, "max_length":500})
# chain = load_qa_chain(llm=OpenAI(temperature=0.5), chain_type="stuff")
# query = "được quyền lợi gì khi đẻ con"
# # query = "What did the president say about the Economy"
# docs = db.similarity_search(query)
#
# print(chain.run(input_documents=docs,question=query))
chatgpt = ChatGPT()
def chatbot(input_text):
response = chatgpt.query(input_text)
return response
iface = gr.Interface(fn=chatbot,
inputs=gr.components.Textbox(lines=7, label="Enter your text"),
outputs="text",
title="Custom-trained AI Chatbot")
iface.launch(share=True)